LAX ATMP Non-CEQA Transportation Assessment Prepared for: Los Angeles Department of Transportation **APRIL 2021** LA19-3119 FEHR PEERS ## Table of Contents | Executive Summary | 1 | |--|----| | Proposed Project Roadway Modifications | 3 | | Pedestrian, Bicycle, and Transit Access | 6 | | Existing Facilities Inventory | 6 | | Future Programmed LAX Landside Access Modernization Program Improvements | 6 | | Evaluation | | | Recommended Actions | 15 | | Project Access, Safety, and Circulation Evaluation | 16 | | Operational Evaluation | 16 | | Safety Evaluation | 31 | | Passenger Loading Evaluation | 36 | | Recommended Actions | 37 | | Project Construction | 42 | | Methodology | 42 | | Screening Criteria | 42 | | Evaluation | 42 | | Recommended Actions | 45 | ## Appendices | Appendix A: LAX ATMP non-CEQA Existing Conditions Operational Assessment | |--| | Appendix B: Cumulative Projects List | | Appendix C: Trip Generation Update Memorandum | | Appendix D: 2028 Conditions Study Intersection Lane Configurations and Volumes | | Appendix E: 2028 Conditions LOS Worksheets | | Appendix F: 2028 Conditions Synchro Queue Reports | Appendix G: Corrective Actions LOS and Queueing Worksheets ### List of Figures | Figure 1: | ATMP Roadway Modifications | 4 | |-----------|--|----| | Figure 2: | LAMP Phase 1 Roadway Modifications | 5 | | Figure 3: | Pedestrian Destinations and Infrastructure Inventory | 8 | | Figure 4: | Existing Bike Facilities | 9 | | Figure 5: | Existing Transit Facilities | 10 | | Figure 6: | Study Intersections | 18 | ## List of Tables | Table 1: Existing Pedestrian Amenities – Sidewalk Widths and Crossing Distance | 11 | |--|----| | Table 2: Existing Pedestrian Amenities – Intersection Amenities | 11 | | Table 3: Study Intersections | 17 | | Table 4: LOS Thresholds for Signalized and Unsignalized Intersections | 20 | | Table 5: Summary of LAX Trip Generation in Projected Future Conditions (Year 2028) | 22 | | Table 6: LAX Trip Generation in Projected Future Conditions (Year 2028) | 23 | | Table 7: Projected Future Conditions (Year 2028) Intersection Levels of Service | 25 | | Table 8: Projected Future Conditions (Year 2028) 95 th percentile Queueing at Key Movements | 28 | | Table 9: Proposed Project Intersection Modifications | 31 | | Table 10: Intersection Injury Collision Summary, 2015-2019 | 33 | | Table 11: Segment Injury Collision Summary, 2015-2019 | 34 | | Table 12: Safety Countermeasures in Proposed Roadway Changes | 36 | | Table 13: Recommended Corrective Actions for Project-Related Queueing Deficiencies | 38 | | Table 14: LOS and Queueing with Corrective Action at Deficient Locations | 39 | ## **Executive Summary** This report presents outcomes from the non-CEQA transportation assessment for the Airfield and Terminal Modernization Project (ATMP or the Project) at Los Angeles International Airport (LAX). Los Angeles World Airports (LAWA) proposes to implement airfield, concourse and terminal, and landside roadway improvements at LAX as part of LAWA's continuing commitment to maintain LAX as a world-class airport. The proposed Project consists of several primary elements, including airfield improvements, that would enhance operational management and safety within the north airfield, new terminal facilities (i.e., Concourse 0 and Terminal 9) to upgrade passenger processing capabilities and enhance the passenger experience, and an improved system of roadways to better access the Central Terminal Area (CTA) and new facilities. This transportation assessment is focused on the elements of the proposed Project that directly relate to the operations of the surrounding roadways. A more detailed description of those improvements is provided in **Proposed Project Roadway Modifications.** The non-CEQA transportation assessment for the Project was conducted in line with guidance provided in the Los Angeles Department of Transportation's *Transportation Assessment Guidelines* (2020). The analyses included in the non-CEQA assessment and summarized in this report are: - **Pedestrian, Bicycle, and Transit Assessment:** This analysis determined the Project's potential effect on pedestrian, bicycle, and transit facilities in the vicinity of the proposed Project. The analysis included an inventory of existing facilities, as well as an evaluation utilizing criteria provided in the LADOT's *Transportation Assessment Guidelines* (LADOT TAG). - Project Access, Safety, and Circulation Evaluation: This analysis covered intersection operations, roadway design and collision history, and passenger loading in line with the evaluation methodologies and criteria provided in the LADOT TAG. Under Senate Bill 743 and the LADOT TAG, the operational evaluation performed for the Project is not for consideration under the California Environmental Quality Act (CEQA) and is instead provided for informational purposes only. - Project Construction Analysis: This analysis addressed activities associated with Project construction through the lens of temporary transportation constraints, temporary loss of access, and temporary impacts to transit. The LADOT TAG also includes guidance on a residential street cut-through analysis. Following conversations with LADOT it was decided this analysis was not required for the proposed Project. The reason for this is that the most common routes to and from the airport are on major Boulevards such as Sepulveda Boulevard, Lincoln Boulevard, Manchester Avenue, Century Boulevard, and La Tijera Boulevard. Motorists typically do not gain a travel time advantage by cutting through a residential neighborhood in the Westchester area, as the Boulevards provide the most direct access to airport facilities. For each of these analyses, the LADOT TAG and LADOT staff have provided the following thresholds to determine if an identified deficiency is Project-related: - Pedestrian, Bicycle, and Transit Assessment: A project-related deficiency could be identified if a project would directly or indirectly result in a permanent removal or modification that would lead to the degradation of pedestrian, bicycle, or transit facilities, or if a project would intensify pedestrian, bicycle, or transit demand in locations where there are currently missing or substandard facilities. - Project Access, Safety, and Circulation Evaluation: Project-related deficiencies can be tied to intersection operations, safety, and/or passenger loading: - Intersection operations: The LADOT TAG considers project access constrained if a project's traffic would contribute to unacceptable or extended queueing, leading to spillover from turn pockets, blockage at cross streets or alleys, or contributing to "gridlock" congestion. This is defined as locations where: - The projected peak hour intersection level of service (LOS) is D, and the lane queue change at any directional LOS greater than D exceeds 75 feet, or - The projected peak hour intersection LOS is greater than D, and the lane queue change at any directional LOS greater than D exceeds 50 feet. - Safety: A project-related deficiency could be identified if a project would result in changes to roadway operations that would be expected to affect safety for vulnerable road users. This analysis assumes vulnerable road users are defined as people who walk or bike. - Passenger Loading: A project-related deficiency could be identified if a project's curbside loading (e.g. passenger pick up and drop off) demand could not be accommodated within the allocated curb space, or if it would create traffic, transit, bicycle, or pedestrian conflicts. This is typically assessed for passenger loading that affects public right of way. - Project Construction Analysis: A project-related deficiency could be identified if project construction is expected to substantially interfere with pedestrian, bicycle, transit, or vehicle circulation and accessibility to adjoining areas. Based on the criteria outlined above, Project-related deficiencies were only identified in the Project Access, Safety, and Circulation evaluation: Project Access, Safety, and Circulation: The Sepulveda Boulevard/96th Street intersection was found to have Project-related queueing deficiencies in the westbound right and northbound through movements. A series of corrective actions are identified in Recommended Actions. The proposed recommended actions are anticipated to fully address the identified queueing deficiency. ## Proposed Project Roadway Modifications The main elements of the LAX Airfield and Terminal Modernization Program include airfield improvements, concourse and terminal improvements, and landside improvements, including, but not limited to, roadway system improvements as further described below. The landside improvements are comprised of new arrival and departure roadways and a parking facility to support Terminal 9; an additional station on the previously-approved LAX Automated People Mover (APM) line with a pedestrian connection to Terminal 9; a pedestrian corridor between Terminals 8 and 9 that would bridge Sepulveda Boulevard; new roadway segments that would further improve vehicle access into and out of the LAX Central Terminal Area; and other projects related to these improvements. The elements most relevant to this report are the landside roadway modifications. These modifications would build upon improvements approved as part of the LAX Landside Access Modernization Program (LAMP) and provide the following additional benefits related to the Central Terminal Area (CTA): - Reroute exiting CTA vehicles to Sepulveda Boulevard via new grade-separated ramps north of Century Boulevard to extend the merging zones and vehicle queueing
areas - Reroute entering CTA vehicles on Sepulveda Boulevard via a new at-grade ramp for northbound traffic and a new grade-separated ramp for southbound traffic, both of which would tie into a new elevated roadway system that includes vehicle queueing areas - Create a common entry point east of Sepulveda Boulevard for all vehicles entering the CTA - Improve traffic flow into and out of the CTA - Provide a more simplified roadway configuration and maximize distances for driver wayfinding and decision-making to multiple destinations - Improve through-traffic flow for surrounding communities (i.e., vehicles on Sepulveda Boulevard that are not accessing the airport) by reducing traffic congestion on Sepulveda Boulevard - Integrate the proposed roadway system improvements, including landside access to Terminal 9, with the approved LAX Landside Access Modernization Program improvements The proposed Project roadway modifications are shown in **Figure 1.** The Landside Access Modernization Program Phase 1 improvements, approved as part of a separate project, are scheduled to be implemented prior to the proposed Project completion. The roadway modifications included as part of Phase 1 of the Landside Access Modernization Program are included in **Figure 2.** Source: CDM Smith, 2021 Figure 1 Figure 2 # Pedestrian, Bicycle, and Transit Access The proposed Project was assessed to understand its effects on the surrounding pedestrian, bicycle, and transit facilities. This assessment analyzed the particular effects of removal, degradation, or modification of facilities and intensification of use, including that on the City's High-Injury Network. This assessment followed the evaluation criteria outlined in the LADOT TAG and was conducted under the context of the relatively low existing active mobility and transit uses at LAX. The pedestrian, bicycle, and transit facilities in the study area function primarily to move visitors and employees between parking garages and other airport-related land uses, including the CTA. Finally, the evaluation also took into consideration relevant improvements under the LAX Landside Access Modernization Program – a separate LAWA project that will significantly modify the roadway around LAX. For more detail on those roadway modifications, please refer to the LAX Landside Access Modernization Program EIR (LAWA, 2016). #### **Existing Facilities Inventory** An inventory of existing active transportation and transit facilities within a quarter mile of the Project was completed to understand the existing conditions of these facilities. Maps of pedestrian, bicycle, and transit facilities are provided in **Figure 3**, **Figure 4**, and **Figure 5**. **Figure 3** provides an inventory of pedestrian amenities at major intersections in the Project area. Pedestrian facilities were generally found to be in adequate condition. Most crossings have actuated pedestrian push buttons, with the exception of a few east-west pedestrian crossings along Century Boulevard. # Future Programmed LAX Landside Access Modernization Program Improvements While the LADOT TAG requires the proposed Project to be assessed compared to existing conditions, it is important to note that the LAX Landside Access Modernization Program includes a variety of bike, pedestrian, and transit improvements that will be implemented in the future: - **Bike Facilities:** The LAX Landside Access Modernization Program includes modifications to bike facilities in the Project area, including: - 3.3 miles of bicycle lanes along 94th Street, Jetway Boulevard, Westchester Parkway, and Aviation Boulevard - 1.2 miles of a new multi-use path along Arbor Vitae Street, Aviation Boulevard, and Century Boulevard - **Pedestrian Facilities:** The LAX Landside Access Modernization Program includes modifications to pedestrian facilities in the Project area, including: - 4.9 miles of new sidewalk along Jetway Boulevard, 94th Street, Maintenance Road, 93rd Street, 94th Street Connector, 98th Street, Concourse Way, and Tuskegee Way - o 7.0 miles of improved sidewalks and parkways throughout the Project area - Over 960 new street trees throughout the Project Area - Transit Facilities: The LAX Landside Access Modernization Program also includes the Automated People Mover. The APM is an electric train system on a 2.25-mile long elevated guideway that will have six stations three in the CTA and three outside of the airport. Separately, LA Metro will construct a new multimodal transportation center to connect LAX to the regional bus and transit system. The transportation center will include at-grade light rail transit platforms, a bus plaza, a bicycle hub, a pedestrian plaza, a passenger vehicle pick-up and drop-off area, and a transit center/terminal building ("Metro Hub") to connect passengers among the multiple transportation modes. Curb Ramp + Tactile Warning Lateral Crosswalk Bus Stop **IIII** Continental Crosswalk Figure 3 Map originally prepared by CDM Smith ---- Existing Bike Facilities Table 1: Existing Pedestrian Amenities – Sidewalk Widths and Crossing Distance^{1,2} | Street Name | Study Area Extents | Direction | Existing Sidewalk
Width (feet) | Average Distance
between Marked
Crossings (feet) | |-------------------------|---|-------------|-----------------------------------|--| | Sepulveda Boulevard | Lincoln Boulevard to
Century Boulevard | North-South | 3' – 12' | 1,150′ | | Vicksburg Avenue | 96 th Street to Century Boulevard | North-South | 5' – 14' | 510′ | | Jenny Avenue | South of Westchester Parkway to 96 th Street | North-South | 3' – 7' | 1,270′³ | | Avion Drive | 98 th Street to Century Boulevard | North-South | 6' – 15' | 290′ | | 96 th Street | Sepulveda Boulevard to
Jenny Avenue | East-West | 5′ – 12′ | 950′ | | 98 th Street | Sepulveda Boulevard to
Avion Drive | East-West | 5′ – 11′ | 1,070′ | | Century Boulevard | Sepulveda Boulevard to
Avion Drive | East-West | 5' – 14' | 820' | #### Notes Source: Fehr & Peers, 2020. **Table 2: Existing Pedestrian Amenities – Intersection Amenities**¹ | Intersection | Pedestrian Signals | Pedestrian Button | Amenities ² | | | | |---|---|-------------------|---|--|--|--| | Sepulveda Boulevard/Lincoln Boulevard | ✓ | \checkmark | | | | | | Sepulveda Boulevard/Sepulveda Eastway | Not signalized | Not signalized | | | | | | Sepulveda Boulevard/96 th Street | Not signalized | Not signalized | Dura harrahan lawa | | | | | Sepulveda Boulevard/98th Street | Not signalized | Not signalized | Bus benches, bus shelters, street trees | | | | | Sepulveda Boulevard/Century Boulevard | \checkmark - with the exception of the west-leg crossing | / | | | | | | Vicksburg Avenue/96th Street | ✓ | ✓ | | | | | | Vicksburg Avenue/98th Street | Not signalized | Not signalized | Street trees | | | | | Vicksburg Avenue/Century Boulevard | \checkmark - with the exception of the north-leg crossing | ✓ | Street trees | | | | | Avion Drive/98th Street | Not signalized | Not signalized | Bus benches, bus | | | | | Avion Drive/Century Boulevard | ✓ | ✓ | shelters, street trees | | | | | 96th Street/Alverstone Avenue | Not signalized | Not signalized | D h h h | | | | | 96 th Street/Jenny Avenue | \checkmark - with the exception of the north-leg crossing | ✓ | Bus benches, bus shelters, street trees | | | | #### Note: ^{1.} This inventory was completed using aerial imagery and reflects existing conditions. Programmed improvements under the LAX Landside Access Modernization Program are not reflected in this analysis. ^{2.} Sidewalks are on both sides of all streets listed in this table with the exception of Century Boulevard, which only has a sidewalk on the north side of the street. ^{3.} The nearest crosswalk is outside the study area. This inventory was completed using aerial imagery and reflects existing conditions. Programmed improvements under the LAX Landside Access Modernization Program are not reflected in this analysis. Source: Fehr & Peers, 2020. #### **Evaluation** The following evaluation criteria, as outlined in the LADOT TAG, were used to assess the effects of the proposed Project on surrounding pedestrian, bicycle, and transit facilities. Would the Project directly or indirectly result in a permanent removal or modification that would lead to the degradation of pedestrian, bicycle, or transit facilities, including but not limited to: - Removal or degradation of existing bikeways and/or supporting facilities (e.g., bikeshare stations, on-street bike racks/parking, bike corrals, etc.)? - No, the Project would not remove or degrade the existing bikeways and/or supporting facilities. The Project would require the removal of existing bicycle lanes on 96th Street; however, these bicycle facilities are already approved for removal under the *Landside Access Modernization Program EIR*, which provides an alternative connection with the construction of bicycle and multi-use paths in the vicinity. Please see **Figure 4** for a map of the existing bicycle facilities and **Future Programmed LAX Landside Access Modernization Program Improvements** for more details on the programmed bike facilities. - Removal or degradation of existing transit and/or local circulator facilities including stops, benches, shelters, concrete pads, bus lanes, or other amenities? - No, although the Project may require repositioning of two bus stops on 96th Street in conjunction with the proposed realignment of a portion of that street, the repositioning would not lead to degradation of transit facilities. Such repositioning of the bus stops, if needed, would be coordinated with the affected transit operator(s), and bus service in the area would continue. Furthermore, there are several
planned improvements to existing transit services including ongoing Metro efforts to construct the Metro Crenshaw/LAX Line that will include a station near the Aviation Boulevard and Arbor Vitae Street intersection. In addition, the APM and transit consolidation improvements are proposed as part of the LAX Landside Access Modernization Program. Please see Figure 5 for a map of the existing transit connections. - Removal of other existing transportation system elements supporting sustainable mobility? - No, the Project does not propose to remove transportation system elements supporting sustainable mobility. The Project has been shown to be consistent with transportation-related plans, programs, ordinances, and policies that were adopted to protect the environment. - Increase street crossing distance for pedestrians; increase number of travel/turning lanes; or increase turning radius or turning speeds? - Yes, the Project would increase the number of travel/turning lanes, and therefore increase the street crossing distance for pedestrians at two locations – the Sepulveda Boulevard/96th Street and Century Boulevard/Jetway Boulevard intersections. The proposed reconfigurations of the Jetway Boulevard/Century Boulevard and Sepulveda Boulevard/96th Street intersections would be designed in compliance with City design standards. The Project also includes an increase in the number of travel lanes via newly constructed above-grade ramps, but not at locations where marked crosswalks exist. - Removal, degradation, or narrowing of an existing sidewalk, path, crossing, or pedestrian access way? - No, the Project would not remove, degrade, or narrow existing pedestrian facilities in the pedestrian environment because the Project would retain the existing sidewalk widths adjacent to the Project. - Removal or narrowing of existing sidewalk-street buffering elements (e.g., curb extension, parkway, planting strip, street trees, etc.)? - No, the Project does not propose to remove or narrow existing sidewalk-street buffering elements. The Project may include redesigning the existing landscaping at Sepulveda and Century Boulevards due to the construction of new ramps. The proposed changes would be in line with the Century Boulevard Streetscape Plan. Would the Project intensify use of existing pedestrian, bicycle, or transit facilities, including but not limited to: - Increase in pedestrian or vehicle volume, thereby increasing the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections where a crossing is not available without significant rerouting? - No, the proposed Project would not increase the need or attraction to cross a street at unmarked pedestrian crossings or unsignalized or uncontrolled intersections. Based on the proposed infrastructure, level of existing activity, and anticipated level of activity attributable to the proposed Project, no significant rerouting for pedestrians or vehicles is anticipated. - Result in new pedestrian demand between project site entries/exits and major destinations or transit stops expected to serve the development where there are missing pedestrian facilities (e.g., gaps in the sidewalk network) or substandard pedestrian facilities (e.g., narrow or uneven sidewalks, no crosswalks at intersections or mid-block, no marked crossing, or push button crossing rather than actuated, etc.)? - No, the Project would not result in new pedestrian demand where there are missing pedestrian facilities between the Project and nearby major destinations or transit stops. As shown in **Figure 3**, the Project area includes marked crosswalks and curb ramps with tactile warnings at intersections in the vicinity of the Project. - Increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, unshaded, or unlit areas? - No, the Project would not increase transit demand at bus stops that lack marked crossings, with insufficient sidewalks, or are in isolated, unshaded, or unlit areas. All bus stops near the Project area are accessible by crosswalks and sidewalks. The bus stops on the southwest corner of Sepulveda Boulevard and Century Boulevard, operated by LA Metro, Torrance Transit, and others, includes one sheltered bench, one unsheltered bench, and one bench underneath the overpass. Street lighting is also provided. The bus stops on the northeast corner have two bus benches without shelters. Street lighting is provided, with unshaded areas. The bus stops along 96th Street, at Sepulveda Boulevard, include two bus benches on the south side of the street, with street lighting and unshaded area. The north side of the street includes one bus bench, a seating area, street lighting, and street trees that provide some shade for the area. Furthermore, there are several planned improvements to existing transit services including Metro's completion of the Metro Crenshaw/LAX Line that will include a station near the Aviation Boulevard/Arbor Vitae Street intersection, and a "Metro Hub" to connect passengers among multiple transportation modes. - Increase pedestrian demand of streets on the High-Injury Network and Vision Zero - In order to achieve Vison Zero, the City of Los Angeles is implementing a data-driven approach. The High-Injury Network (HIN) spotlights streets with a high concentration of traffic collisions that result in severe injuries and deaths, with an emphasis on those involving people walking and bicycling. Both Sepulveda Boulevard south of Century Boulevard, between Century Boulevard and the Century Boulevard ramps (roughly 350 feet), and Century Boulevard between Sepulveda Boulevard and La Cienega Boulevard, are designated as part of the City's HIN. There is no expected increase in intensification of use of pedestrian facilities in the vicinity of the Project above the level of demand that currently exists in the study area, including along the High-Injury Network. Sidewalks will be added along the south side of Century Boulevard between Jetway Boulevard and Aviation Boulevard as part of the LAX Landside Access Modernization Program . Segments of World Way North and World Way South, located within the CTA, are also designated as part of the City's HIN. None of these sections are on the list of Prioritized (or targeted) Corridors as part of Vision Zero Los Angeles. The proposed Project would not preclude the City from implementing future planned improvements as part of Vision Zero Los Angeles. The responses provided above reflect conditions upon Project completion. During construction there may be temporary closures that result in temporary impacts. #### **Recommended Actions** Based on the above evaluation of pedestrian, bicycle, and transit access, there are no potential Project effects on pedestrian, bicycle, and transit facilities in the vicinity of the proposed Project that would require recommended actions. Detailed engineering concepts were not available at the time of this review. Detailed roadway plans would be developed in accordance with documented safety best practices and City of Los Angeles guidelines. These guidelines include: - The City of Los Angeles Complete Streets Design Guide - The City of Los Angeles Supplemental Street Design Guide (May 2020) - Bureau of Engineering (BOE) Street Design Manual and Standard Plans - Department of Transportation (LADOT) Manual on Policies and Procedures # Project Access, Safety, and Circulation Evaluation Project access, safety, and circulation were evaluated from the perspective of intersection operations, roadway design and collision history, and passenger loading. #### **Operational Evaluation** This section presents outcomes from the intersection level of service and queueing evaluation completed for the Project. Under Senate Bill 743 and the LADOT TAG, the operational evaluation performed for the Project is not subject to CEQA and is instead provided outside of the CEQA process for informational purposes only. #### **Analysis Scenarios** Traffic operations were evaluated for the following scenarios: - **Projected Future Conditions Baseline (2028 Baseline):** Future (Year 2028) conditions with projected background vehicle trip growth in the study area and anticipated ground transportation system improvements included in Phase 1 of the LAX Landside Access Modernization Program, but without the proposed Project. - **Projected Future Conditions with Proposed Project (2028 with Project):** Future (Year 2028) conditions described above plus the proposed Project. The proposed Project is not evaluated under existing conditions as the study area is expected to change significantly due to the LAX Landside Access Modernization Program between now and the completion of the proposed Project. Therefore, the proposed Project conditions are only evaluated and compared against future baseline conditions. However, existing conditions were still evaluated to understand how the roadway is currently operating today. The existing conditions analysis can be reviewed in **Appendix A**. More specifically, one of the objectives of the proposed Project is to complete construction of the proposed Project prior to the 2028 Olympic and Paralympic Games scheduled to be held in Los Angeles. By year 2028, Phase 1 of the LAX Landside Access Modernization Program, including the Automated People Mover (APM), Intermodal Transportation Facility (ITF) East, ITF West, Consolidated Rental Car Facility (CONRAC), Phase 1 roadways, and a connection to the Airport Metro Connector 96th Street Transit Station, will be completed. Phase 1 of the LAX Landside Access Modernization Program is approved, funded, under construction, and scheduled for completion well before 2028. For this reason, it would be misleading and without informative value to analyze the Project's impacts at buildout in 2028 without accounting for the APM, ITF East, ITF West, CONRAC, and other LAX Landside Access
Modernization Program Phase 1 improvements. These improvements will substantially change the surface transportation characteristics around the airport. Therefore, projected future conditions in year 2028 are used as the sole baseline for the traffic operations impact analysis since use of existing conditions (2019) as the baseline would be misleading and without informative value. #### **Study Intersection Locations** The list of study intersections was developed in conjunction with LADOT staff and based on guidance provided in LADOT's *Transportation Assessment Guidelines*. The LADOT TAG specifies that intersections immediately adjacent to the project and in proximity to the project through which 100 or more project-generated trips would travel should be analyzed. The study intersections meeting that criterion are listed in **Table 3** and shown on **Figure 6**. **Table 3: Study Intersections** | Intersection # | Study Intersections | |----------------|---| | 1 | Sepulveda Boulevard/Manchester Avenue | | 2 | Sepulveda Boulevard/La Tijera Boulevard | | 3 | Sepulveda Boulevard/Westchester Parkway | | 4 | Sepulveda Boulevard/Lincoln Boulevard | | 5 | Sepulveda Boulevard/96 th Street | | 6 | Sepulveda Boulevard/Century Boulevard | | 7 | Sepulveda Boulevard (northbound)/ I-105 Westbound Off-Ramp | | 8 | Sepulveda Boulevard/Imperial Highway | | 9 | Jetway Boulevard/Westchester Parkway (new intersection in Projected Future Conditions) ¹ | | 10 | Jetway Boulevard/Century Boulevard (new intersection in Projected Future Conditions) ¹ | | 11 | Airport Boulevard/Westchester Parkway/Arbor Vitae Street | | 12 | Airport Boulevard/96 th Street | | 13 | Airport Boulevard/Century Boulevard | | 14 | Aviation Boulevard/Century Boulevard | | 15 | La Cienega Boulevard/Century Boulevard | | 16 | La Cienega Boulevard (south of Century Boulevard)/I-405 Southbound ramps | #### Note: Source: Fehr & Peers, 2020. ^{1.} These two intersections will be built as part of the LAX Landside Access Modernization Program. They do not exist under existing conditions. # Study Intersections Figure 6 LAX Airfield and Terminal Modernization Project Study Intersections #### **Analysis Methodology** Traffic operations, including intersection level of service (LOS) and queueing, were evaluated using the *Highway Capacity Manual* (HCM) and Synchro 10 software. The methodology employed is in line with guidance provided in the *Transportation Assessment Guidelines*. LADOT typically considers LOS A through D as acceptable operating conditions. This operations analysis reports the 95th percentile queue lengths (in feet) for all key turning movements and intersection control delay (in seconds) along with the corresponding level of service for each study intersection. "Key turning movements" are defined as movements where the 95th percentile queue length exceeds the existing storage capacity. 95th percentile queue length is defined as the queue length that has only a five-percent probability of being exceeded during the analyzed peak period. The 95th percentile queue length is a conservative assumption commonly employed for intersection design considerations and does not represent the typical queue length an average driver would experience. #### **Level of Service Methodology** This analysis uses the Transportation Research Board's *Highway Capacity Manual*, 6th *Edition* (HCM) methodology to evaluate intersection level of service and delay at both signalized and unsignalized intersections. The calculation of delay represents the amount of delay experienced by vehicles passing through the intersection. At signalized and all-way stop intersections, the delay and corresponding LOS represent the average delay experienced. For two-way stop intersections, the delay and corresponding LOS represent the worst-case approach. HCM level of service thresholds for signalized and unsignalized intersections are presented in **Table 4**. **Table 4: LOS Thresholds for Signalized and Unsignalized Intersections** | Level of
Service
(LOS) | LOS Definition ¹ | Signalized
Intersection
Average Control
Delay ² | Unsignalized
Intersection
Average Control
Delay ² | |------------------------------|--|---|---| | А | Excellent. No vehicle waits longer than one red light and no approach phase is fully used. | <u>≤</u> 10.0 | <u>≤</u> 10.0 | | В | Very good. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles. | > 10.1 to 20.0 | > 10.1 to 15.0 | | С | Good. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles. | > 20.1 to 35.0 | > 15.1 to 25.0 | | D | Fair. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups. | > 35.1 to 55.0 | > 25.1 to 35.0 | | E | Poor. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles. | > 55.1 to 80.0 | > 35.1 to 50.0 | | F | Failure. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths | > 80.0 | > 50.0 | #### Notes: - Source: Transportation Research Circular No. 212, Interim Materials on Highway Capacity, Transportation Research Board, 1980. - 2. Delay shown in seconds per vehicle. Source: Highway Capacity Manual, 6th Edition Transportation Research Board, 2016. #### **2028 Conditions** #### 2028 Conditions Forecasts The traditional process for developing future project turning movement volumes involves applying an estimated annual growth rate to existing volumes, establishing a project trip distribution, and adding the project trip generation to the network based on the established project trip distribution (trip assignment). However, given the complexities of the Project, including significant background growth and changes in roadway design and LAX access points, this traditional process is not appropriate. Instead, turning movement volumes for Projected Future Conditions (Year 2028) were developed using the LAX ATMP Travel Demand Model (Project Travel Demand Model). This model is based on the City of Los Angeles Travel Demand Forecasting Model (owned and maintained by LADOT) and was developed for the vehicle-miles-traveled assessment completed for the CEQA analysis for the Project. The Project Travel Demand Model was calibrated and validated for accuracy and sensitivity based on the latest California modeling quidance specified in the 2017 California Regional Transportation Plan guidelines. The Projected Future Conditions project analysis is based on a Friday in August 2019, as this represents the peak activity and trip generation of the proposed Project. This varies from the existing conditions analysis, summarized in **Appendix A**, which utilizes weekday traffic counts collected in February and March of 2019. While February and March are more typical analysis months for the purpose of operations analysis in the City of Los Angeles, they are not the peak months of trip generation for the proposed Project site. To understand the traffic volume differences between the February/March and August timeframes, peak hour volumes were compared using historic Freeway Performance Measurement System (PeMS) data. This check revealed that, on average, the August volumes were about two percent higher for the AM peak hour and about four percent lower in the PM peak hour. **Future Roadway Modifications** #### 2028 Baseline The surface transportation characteristics around LAX will be substantially changed by the modifications associated with Phase 1 of the LAX Landside Access Modernization Program. As such, the model developed for the 2028 Baseline scenario includes roadway system modifications included in Phase 1 of the LAX Landside Access Modernization Program, but without the roadway system modifications associated with the proposed Project. The LAX Landside Access Modernization Program Phase 1 roadway modifications are shown in **Figure 1.** The model was also updated based on the roadway modifications included in the 2040 City of Los Angeles Travel Demand Forecasting Model. #### 2028 with Project The proposed Project includes a series of airport access improvements that significantly change the surrounding roadways. As such, the model developed for the 2028 with Project scenario includes roadway system modifications proposed by the Project, as well as the LAX Landside Access Modernization Program Phase 1 modifications. The proposed Project roadway modifications are shown in **Figure 2.** #### Background Traffic Growth To estimate the future growth and change in traffic for Projected Future Conditions (Year 2028), the Project Travel Demand Model was updated with model socio-economic data (SED) and growth associated with cumulative projects. The full list of cumulative projects considered in model development can be found in **Appendix B**. #### Project Future Conditions Vehicle Trip Generation Future trip generation models were developed for LAX using airport passenger and employee trip generation data provided by LAWA, and Southern California Association of Governments' (SCAG) regional aviation forecasts included in their 2016 *Regional Transportation Plan*. Based on this analysis, the passenger forecasts for this analysis included the following: • Million
annual passenger estimates: 110.8 million annual passengers (MAP) for 2028 - **Typical, peak month conditions:** Assumes a peak month, average day airline passenger schedule - **Central Terminal Area model:** Includes data from the Traffic Model for the LAX CTA, validated based on observed counts in 2019, and automatic vehicle identification (AVI) count data that provides number of vehicles by terminal by mode by time of day - **Airport parking allocation:** A parking allocation model for LAX based on transaction data and surveys of LAWA and private parking lots Employee trip generation is based on various factors including passengers, tenant facilities, and current and future work shifts. The existing employee trip generation was factored by 1.5 percent per year to account for the growth in employment associated with increased activity. New employee trip generation for Terminal 9 and Concourse 0 were estimated separately. The trip generation estimates for LAX in Projected Future Conditions, both Baseline and with Project, are summarized in **Table 5** and shown in detail in **Table 6**. The trip generation presented in **Table 5** and used in this operations analysis differs from that presented and used in the October 2019 *LAX Airfield & Terminal Modernization Project Draft Environmental Impact Report.* A detailed description of the assumptions used in this analysis are presented in **Appendix C**. Table 5: Summary of LAX Trip Generation in Projected Future Conditions (Year 2028)¹ | | А | M Peak Ho | ur | PM Peak Hour | | | | | | | |--|--------|-----------|--------|--------------|--------|--------|--|--|--|--| | Project Scenario | In | Out | Total | In | Out | Total | | | | | | Future 2028 Baseline ² | 11,240 | 9,750 | 20,990 | 10,630 | 11,390 | 22,020 | | | | | | Future 2028 with Project ² | 11,570 | 9,840 | 21,410 | 10,840 | 11,670 | 22,510 | | | | | | Future 2028 with TDM Adjustments ³ | 10,880 | 9,770 | 20,650 | 10,740 | 10,820 | 21,560 | | | | | | Trip Generation Difference (with Project-Baseline) | -360 | 20 | -340 | 110 | -570 | -460 | | | | | #### Notes: - 1. Trip generation includes cars, trucks, and vans accessing LAX and associated land uses, including CTA, Terminal 9, ITF East and West, cargo facilities, employee parking lots, and rental car and other passenger parking facilities. Transportation Network Companies (TNCs) are included. This trip generation includes a reasonable representation of all LAX employee vehicle trips but may not represent 100 percent of the airport employment. - 2. Future 2028 Baseline and with Project trip generation estimates factor in TDM strategies approved as part of the LAMP - 3. As part of the mitigation for the proposed Project, LAX has committed to implementing additional TDM measures above and beyond what was proposed in the LAMP EIR. The associated trip adjustments from those TDM strategies are accounted for here and are established from research-based trip reduction factors. Source: Ricondo and Associates, Inc. and Fehr & Peers, 2021. **Table 6: LAX Trip Generation in Projected Future Conditions (Year 2028)** | | 2028 Baseline | | | | | | | | 2028 with Project | | | | | | | | |---|-------------------|--------|-------------|--------|----------|--------|-------------|---------|-------------------|--------|-------------|----------|-------------------|--------|-------------|-------| | | | Inbo | | | Outbound | | | Inbound | | | | Outbound | | | | | | Peak Hour | Cars ¹ | Trucks | Van/
Bus | Total | Cars* | Trucks | Van/
Bus | Total | Cars ¹ | Trucks | Van/
Bus | Total | Cars ¹ | Trucks | Van/
Bus | Total | | AM Peak Hour | | | | | | | | | | | | | | | | | | СТА | 5,470 | - | 30 | 5,500 | 5,250 | - | 30 | 5,280 | 4,890 | - | 30 | 4,920 | 4,690 | - | 30 | 4,720 | | Terminal 9 | - | - | - | - | - | - | - | - | 590 | - | - | 590 | 570 | - | _ | 570 | | ITF East | 790 | - | 80 | 870 | 790 | - | 80 | 870 | 790 | - | 80 | 870 | 790 | - | 80 | 870 | | IFT West | 1,680 | - | 470 | 2,150 | 1,510 | - | 470 | 1,980 | 1,680 | - | 470 | 2,150 | 1,510 | - | 470 | 1,980 | | Cargo Facilities /
Employee Parking
World Way West ² | 1,140 | 340 | 10 | 1,490 | 790 | 290 | 10 | 1,090 | 1,140 | 340 | 10 | 1,490 | 790 | 290 | 10 | 1,090 | | Employee Parking Lots ² | 530 | - | 50 | 580 | 160 | - | 50 | 210 | 850 | - | 50 | 900 | 240 | - | 50 | 290 | | Rental Car and Other
Passenger Parking
Facilities (Private and
Public) | 460 | 80 | 110 | 650 | 140 | 80 | 100 | 320 | 460 | 80 | 110 | 650 | 140 | 80 | 100 | 320 | | AM Peak Hour Total
Vehicle Trips without
TDM Adjustments | 10,070 | 420 | 750 | 11,240 | 8,640 | 370 | 740 | 9,750 | 10,400 | 420 | 750 | 11,570 | 8,730 | 370 | 740 | 9,840 | | TDM Trip
Adjustments ^{3,4} | - | - | - | - | - | - | - | - | -690 | - | - | -690 | -70 | - | - | -70 | | AM Peak Hour Total
Vehicle Trips with
TDM Adjustments | 10,070 | 420 | 750 | 11,240 | 8,640 | 370 | 740 | 9,750 | 9,710 | 420 | 750 | 10,880 | 8,660 | 370 | 740 | 9,770 | **Table 6: LAX Trip Generation in Projected Future Conditions (Year 2028)** | | 2028 Baseline | | | | | | | 2028 with Project | | | | | | | | | |---|-------------------|--------|-------------|--------|--------|----------|-------------|-------------------|-------------------|--------|-------------|--------|-------------------|--------|-------------|--------| | | Inbound | | | | | Outbound | | | Inbound | | | | Outbound | | | | | Peak Hour | Cars ¹ | Trucks | Van/
Bus | Total | Cars* | Trucks | Van/
Bus | Total | Cars ¹ | Trucks | Van/
Bus | Total | Cars ¹ | Trucks | Van/
Bus | Total | | PM Peak Hour | | | | | | | | | | | | | | | | | | СТА | 5,020 | - | 50 | 5,070 | 5,320 | - | 50 | 5,370 | 4,470 | - | 50 | 4,520 | 4,730 | - | 50 | 4,780 | | Terminal 9 | - | - | - | - | - | - | - | - | 580 | - | - | 580 | 620 | - | - | 620 | | ITF East | 700 | - | 90 | 790 | 700 | - | 90 | 790 | 700 | - | 90 | 790 | 700 | - | 90 | 790 | | IFT West | 2,060 | - | 320 | 2,380 | 2,220 | - | 330 | 2,550 | 2,060 | - | 320 | 2,380 | 2,220 | - | 330 | 2,550 | | Cargo Facilities /
Employee Parking
World Way West ² | 1,200 | 390 | - | 1,590 | 1,250 | 370 | - | 1,620 | 1,200 | 390 | - | 1,590 | 1,250 | 370 | - | 1,620 | | Employee Parking Lots ² | 400 | _ | 40 | 440 | 600 | _ | 40 | 640 | 580 | _ | 40 | 620 | 850 | - | 40 | 890 | | Rental Car and Other
Passenger Parking
Facilities (Private and
Public) | 230 | 50 | 80 | 360 | 290 | 60 | 70 | 420 | 230 | 50 | 80 | 360 | 290 | 60 | 70 | 420 | | PM Peak Hour Total
Vehicle Trips without
TDM Adjustments | 9,610 | 440 | 580 | 10,630 | 10,380 | 430 | 580 | 11,390 | 9,820 | 440 | 580 | 10,840 | 10,660 | 430 | 580 | 11,670 | | TDM Trip
Adjustments ^{3,4} | - | - | - | - | - | - | - | - | -100 | - | - | -100 | -850 | - | - | -850 | | PM Peak Hour Total
Vehicle Trips with
TDM Adjustments | 9,610 | 440 | 580 | 10,630 | 10,380 | 430 | 580 | 11,390 | 9,720 | 440 | 580 | 10,740 | 9,810 | 430 | 580 | 10,820 | #### Notes: - 1. Transportation Network Companies (TNCs) included under the car mode. - 2. Includes a reasonable representation of all LAX employee vehicle trips, but may not represent 100 percent of the airport employment. - 3. Future 2028 Baseline and with Project trip generation estimates factor in TDM strategies approved as part of the LAMP EIR. - 4. As part of the mitigation for the proposed Project, LAX has committed to implementing additional TDM measures above and beyond what was proposed in the LAMP EIR. The associated trip adjustments from those TDM strategies are accounted for here and are established from research-based trip reduction factors. Source: Ricondo and Associates, Inc. and Fehr & Peers. #### 2028 Conditions Operations This section presents traffic operations for the weekday AM and PM peak hours at the study intersections for Projected Future Conditions (Year 2028). #### 2028 Conditions Level of Service **Table 7** summarizes the Projected Future Conditions (Year 2028) weekday peak hour intersection level of service for the study intersections both with and without the Project. The 2028 Baseline and 2028 with Project AM and PM peak hour turning movement counts and assumed lane configurations for each of the study intersections are presented in **Appendix D**. Please refer to the section above, **2028 Conditions Forecasts**, for more detail on the development of these volumes. **Appendix E** provides the detailed intersection LOS calculation worksheets. Because traffic signals in the City are remotely monitored and adjusted according to current traffic conditions, it was assumed that traffic signals at study intersections would be optimized in any future year operations analysis. Changes in level of service at the study intersections can be attributed to the following: - Changes in trip assignment due to the implementation of the proposed Project: Minor changes in intersection delay are anticipated at all study intersections due to shifts in how motorists will access the Airport as well as trip generation associated with the proposed Project. - Induced background traffic volumes due to the proposed Project: Due to the capacity increases on Sepulveda Boulevard associated with the proposed Project's new roadway system diverting airport traffic off of Sepulveda Boulevard, background non-airport traffic volumes in the Projected Future with Project Conditions are expected to slightly increase. - New access point for the Central Terminal Area: The new ramp for motorists entering the CTA from northbound Sepulveda Boulevard will shift from south of Century Boulevard to north of Century Boulevard with the proposed Project. - Access to Terminal 9 via Jetway Boulevard: The main egress from Terminal 9, a major component of the
proposed Project, is off of Jetway Boulevard. Table 7: Projected Future Conditions (Year 2028) Intersection Levels of Service¹ | # | Charles Internación nº2 | Peak Hour | 2028 | Baseline | 2028 with Project | | | |---|--|------------------|--------------------|----------|--------------------|-----|--| | # | Study Intersection ² | Реак поиг | Delay ³ | LOS | Delay ³ | LOS | | | 1 | Compliands Boulevard/Manchester Avenue | AM | 46 | D | 47 | D | | | 1 | Sepulveda Boulevard/Manchester Avenue | PM | 67 | E | 69 | E | | | 2 | Sepulveda Boulevard/La Tijera Boulevard | AM | 49 | D | 44 | D | | | 2 | | PM | 43 | D | 49 | D | | | 3 | Consider Doubleward (Mostely estay Doubleway | AM | 32 | С | 29 | С | | | 3 | Sepulveda Boulevard/Westchester Parkway | PM | 26 | С | 22 | С | | | 4 | Sepulveda Boulevard/Lincoln Boulevard | AM | 25 | С | 25 | С | | Table 7: Projected Future Conditions (Year 2028) Intersection Levels of Service¹ | # | Chiralia Indonesia ni 2 | David | 2028 | Baseline | 2028 with Project | | | |-----------|--|-----------|--------------------|----------|--------------------|-----|--| | # | Study Intersection ² | Peak Hour | Delay ³ | LOS | Delay ³ | LOS | | | | | PM | 26 | С | 26 | С | | | _ | See Leede Berlin and OCth Street | AM | 23 | С | 96 | F | | | 5 | Sepulveda Boulevard/96th Street ⁴ | PM | 33 | С | 81 | F | | | 2 | Sanulyada Paulayard/Cantury Paulayard4 | AM | 26 | С | 80 | F | | | 5 | Sepulveda Boulevard/Century Boulevard ⁴ | PM | 20 | С | 77 | Е | | | 7 | Sepulveda Boulevard (northbound)/I-105 | AM | >120 | F | 115 | F | | | ′ | Westbound Off-Ramp ⁴ | PM | >120 | F | >120 | F | | | 0 6 1 1 5 | Sepulveda Boulevard/Imperial Highway | AM | 47 | D | 48 | D | | | 3 | Sepulveda Boulevard/Imperial Highway | PM | 56 | E | 56 | Е | | | 9 J | Jetway Boulevard/Westchester Parkway | AM | 24 | С | 24 | С | | | | Jetway Boulevard/ Westchester Parkway | PM | 78 | Е | 57 | E | | | 10 | Latingue Poulouged /Continue Poulouged | AM | 10 | А | 21 | С | | | 10 | Jetway Boulevard/Century Boulevard ⁴ | PM | 11 | В | 27 | С | | | 11 | Airport Boulevard/Westchester Parkway/Arbor | AM | 40 | D | 50 | D | | | 11 | vitae Street | PM | 32 | С | 32 | С | | | 12 | Airport Boulevard/96th Street ⁴ | AM | 54 | D | 50 | D | | | 12 | Airport Boulevard/96th Street | PM | 31 | С | 33 | C | | | 13 | Airport Boulevard/Century Boulevard ⁴ | AM | 39 | D | 35 | С | | | 15 | Airport Boulevard/Ceritury Boulevard | PM | 32 | С | 32 | С | | | 1 / | Aviation Poulovard/Contunt Poulovard | AM | 105 | F | 116 | F | | | 14 | Aviation Boulevard/Century Boulevard | PM | 61 | Е | 59 | E | | | 15 | La Cianaga Roulovard/Contuny Poulovard | AM | 76 | Е | 57 | E | | | 13 | La Cienega Boulevard/Century Boulevard | PM | 67 | Е | 67 | Е | | | 16 | La Cienega Boulevard (south of Century | AM | 11 | В | 9 | Α | | | 10 | Boulevard)/I-405 Southbound ramps ⁴ | PM | 7 | А | 7 | А | | #### Notes: - 1. Intersection control delay analyzed using HCM 6th Edition and Synchro 10 software unless otherwise noted. For signalized intersections, delay results show the average control delay experienced at the intersection. - 2. All intersections are signalized - 3. Delay is presented in seconds per vehicle - 4. Intersection control delay measured using HCM 2000 due to incompatibilities between the intersection configuration and/or signal phasing and Synchro 10's application of HCM 6th Edition. Source: Fehr & Peers, 2020. The changes in level of service between 2028 Baseline and 2028 with Project Conditions are most notable at the Sepulveda Boulevard/96th Street and Sepulveda Boulevard/Century Boulevard intersections. - Sepulveda Boulevard/96th Street: While all four factors outlined above contribute to the change in level of service at this intersection, the most substantial factor is egress from Terminal 9 via Jetway Boulevard. Motorists who would like to go northbound on Sepulveda Boulevard from Terminal 9 would likely do so via Jetway Boulevard and the Sepulveda Boulevard/96th Street intersection. This causes a heavy westbound right turn movement from 96th Street onto Sepulveda Boulevard that leads to the degradation of level of service between 2028 Baseline and with Project Conditions. It should be noted that already planned and approved LAX Landside Access Modernization Program Phase 2 includes similar access changes that are anticipated to result in a comparable level of service as the proposed Project. The LAX Landside Access Modernization Program Phase 2 is not scheduled to be completed until 2035 and therefore is not represented in the 2028 Baseline level of service results. - Sepulveda Boulevard/Century Boulevard: While all four factors outlined above contribute to the change in level of service at this intersection, the most substantial factor is the new access point to the CTA. The access point for the CTA for northbound motorists on Sepulveda Boulevard would shift from its current location (just south of Century Boulevard) to the new proposed location north of Century Boulevard, just before 96th Street. Due to this shift, CTA-bound motorists would be routed through the Sepulveda Boulevard/Century Boulevard intersection, adding traffic to the northbound through movement at this intersection. Similar to above, it should be noted that already approved LAX Landside Access Modernization Program Phase 2 roadway improvements scheduled for 2035 also propose shifting the access point to the CTA. #### 2028 Conditions Queueing Analysis **Table 8** summarizes the weekday peak hour 95th percentile queues for key turning movements at study intersections in Projected Future Conditions (Year 2028). "Key turning movements" are defined as movements where the 95th percentile queue length exceeds the existing storage capacity. These movements are shown in bold in **Table 8**. **Appendix F** provides the detailed queueing reports. The LADOT TAG considers Project access constrained if the Project's traffic would contribute to unacceptable or extended queueing, leading to spillover from turn pockets, blockage at cross streets or alleys, or contributing to "gridlock" congestion. This is defined as locations where: - The projected peak hour intersection LOS is D, and the lane queue change at any directional LOS greater than D exceeds 75 feet, or - The projected peak hour intersection LOS is greater than D, and the lane queue change at any directional LOS greater than D exceeds 50 feet. These criteria are met in only two locations, both at Sepulveda Boulevard/96th Street. These locations are shown in red text in **Table 8.** Table 8: Projected Future Conditions (Year 2028) 95th percentile Queueing at Key Movements¹ | | | 2028 | with Project | LOS | | | | 95 th Percen | tile Queue ⁴ | | |---|---|----------------|------------------------------|-----------------|-----------------------|--------------------------------|-----------------|-------------------------|-------------------------|-----------------| | | | Intersection | Directional LOS ² | | | | 2028 Baseline | | 2028 with Project | | | # | Study Intersection | LOS
(AM/PM) | AM Peak
Hour | PM Peak
Hour | Movement ³ | Storage
Length ³ | AM Peak
Hour | PM Peak
Hour | AM Peak
Hour | PM Peak
Hour | | | Sepulveda Boulevard/
Manchester Avenue | D/E | D | F | EBT | 500 | 300 | 550 | 300 | 550 | | | | | D | D | WBR | 150 | 375 | 125 | 375 | 75 | | | | | С | F | NBL | 225 | 100 | 300 | 100 | 300 | | 1 | | | F | F | SBL | 200 | 275 | 500 | 275 | 500 | | | | | С | F | SBT | 575 | 425 | 625 | 450 | 675 | | | | | С | С | SBR | 200 | 50 | 225 | 50 | 225 | | | | D/D | С | С | EBL | 75 | 150 | 125 | 150 | 125 | | | | | F | F | WBL | 200 | 225 | 175 | 225 | 225 | | 2 | Sepulveda Boulevard/
La Tijera Boulevard | | F | F | NBL | 150 | 225 | 200 | 200 | 200 | | | La Tijera boulevard | | С | D | NBT | 400 | 425 | 425 | 450 | 425 | | | | | В | С | NBR | 100 | 75 | 200 | 75 | 200 | | | Sepulveda Boulevard/
Westchester Parkway | c/c | С | D | WBL | 175 | 175 | 200 | 175 | 200 | | • | | | E | С | WBT | 350 | 475 | 225 | 475 | 175 | | 3 | | | D | F | SBL | 150 | 100 | 175 | 100 | 175 | | | | | Α | А | SBT | 400 | 425 | 550 | 425 | 550 | | 4 | Sepulveda Boulevard/
Lincoln Boulevard | C/C | | | SBT | 350 | 550 | 550 | 550 | 575 | | 5 | Sepulveda Boulevard/
96th Street | F /- | F | F | WBR | 575 | 600 | 700 | 700 | 600 | | 5 | | F/F | F | F | NBT | 1,000 | 925 | 1,000 | 1,575 | 1,525 | Table 8: Projected Future Conditions (Year 2028) 95th percentile Queueing at Key Movements¹ | | | 2028 \ | with Project | LOS | | | | 95 th Percen | tile Queue ⁴ | | |----|--|----------------|-----------------|-----------------------------|-----------------------|--------------------------------|-----------------|-------------------------|-------------------------|-----------------| | | | Intersection | Directio | irectional LOS ² | | | 2028 Baseline | | 2028 with Project | | | # | Study Intersection | LOS
(AM/PM) | AM Peak
Hour | PM Peak
Hour | Movement ³ | Storage
Length ³ | AM Peak
Hour | PM Peak
Hour | AM Peak
Hour | PM Peak
Hour | | 6 | Sepulveda Boulevard/
Century Boulevard | F/E | | | | No key mo | ovements | | | | | 7 | Sepulveda Boulevard (northbound)/ I-
105 Westbound Off-Ramp | F/F | F | F | NBT | 450 | 800 | 925 | 775 | 925 | | | Sepulveda Boulevard/
Imperial Highway | | С | F | WBR | 350 | 275 | 550 | 275 | 550 | | 8 | | D/E | F | F | NBL | 300 | 275 | 350 | 275 | 350 | | | | | Е | F | SBL | 225 | 325 | 300 | 325 | 300 | | 9 | Jetway Boulevard/
Westchester Parkway | C/E | Е | F | NBL | 250 | 400 | 775 | 400 | 675 | | 10 | Jetway Boulevard/
Century Boulevard | C/C | | | EBL | 200 | 250 | 275 | | | | | | | Е | E | WBL | 150 | | | 175 | 200 | | 11 | Airport Boulevard/
Westchester
Parkway/Arbor Vitae Street | D/C | С | С | NBL | 125 | 150 | 175 | 150 | 200 | | | | D/C | D | D | EBL | 225 | 150 | 300 | 250 | 400 | | | Airport Boulevard/
96th Street | | D | С | EBT | 400 | 200 | 325 | 225 | 325 | | 12 | | | Е | D | EBR | 100 | 400 | 425 | 350 | 400 | | | | | F | E | WBL | 100 | 200 | 100 | 200 | 100 | | | | | F | С | SBL | 175 | 300 | 225 | 300 | 200 | | | | c/c | Е | D | EBL | 300 | 425 | 300 | 400 | 275 | | 13 | Airport Boulevard/
Century Boulevard | | С | С | WBR | 350 | 575 | 225 | 350 | 250 | | | | | С | С | SBR | 275 | 400 | 450 | 400 | 475 | | 14 | Aviation Boulevard/ | E /E | D | С | EBL | 250 | 225 | 375 | 300 | 450 | | 14 | Century Boulevard | F/E | С | В | EBT | 375 | 350 | 750 | 375 | 750 | Table 8: Projected Future Conditions (Year 2028) 95th percentile Queueing at Key Movements1 | 2028 with Project LOS | | | | | 95 th Percentile Queue ⁴ | | | | | |--|--------------------------------|------------------------------|-----------------|-----------------------|--|-----------------|-----------------|-------------------|-----------------| | | Intersection
LOS
(AM/PM) | Directional LOS ² | | | | 2028 Baseline | | 2028 with Project | | | Study Intersection | | AM Peak
Hour | PM Peak
Hour | Movement ³ | Storage
Length ³ | AM Peak
Hour | PM Peak
Hour | AM Peak
Hour | PM Peak
Hour | | | | В | В | EBR | 375 | 575 | 825 | 575 | 875 | | | | F | F | WBL | 150 | 400 | 425 | 400 | 425 | | | | Е | F | NBL | 350 | 450 | 475 | 450 | 450 | | | | F | F | NBT | 550 | 725 | 750 | 700 | 750 | | | | D | D | EBL | 225 | 100 | 275 | 125 | 325 | | | | D | F | WBL | 175 | 550 | 325 | 550 | 350 | | | | F | С | WBR | 925 | 1,175 | 75 | 1,000 | 75 | | La Cienega Boulevard/ Century Boulevard | E/E | F | E | NBL | 175 | 300 | 150 | 300 | 150 | | century boulevard | | В | D | NBR | 100 | 75 | 300 | 75 | 300 | | | | F | F | SBL | 400 | 225 | 500 | 250 | 550 | | | | D | С | SBR | 125 | 225 | 300 | 225 | 325 | | 6 La Cienega Boulevard (south of Century Boulevard)/I-405 Southbound ramps | A/A | No key movements | | | | | | | | #### Notes: - 1. Queue lengths are only shown for turning movements where the 95th percentile queue is greater than the existing storage capacity in one or both peak hour. Turning movements not shown all have 95th percentile queues that can be accommodated within the existing storage capacity. Queue lengths are outputs from the 2028 Baseline and 2028 with Project Synchro 10 AM and PM peak hour models developed for this Project. "Key turning movements" are shown in **bold**. Locations with Project-related deficiencies are shown in **red text**. The 95th percentile queue length is a conservative assumption commonly employed for intersection design considerations and does not represent the typical queue length that an average driver would experience. - 2. Directional level of service represents the average delay experienced for each turning movement at the intersection. - 3. Movement acronyms represent the cardinal direction (first two letters) and the turn movement (last letter). For example, NBL=Northbound-left movement, NBR = Northbound-right movement, and NBT = Northbound-through movement. - 4. Storage lengths and queues are shown in feet and rounded up to the nearest 25. Source: Fehr & Peers, 2020. #### **Safety Evaluation** A transportation safety evaluation was completed to determine if the Project would result in changes to roadway operations that would be expected to affect safety for vulnerable road users. This analysis assumes vulnerable road users are defined as people who walk or bike. This review was performed using the most recent proposed roadway plans available at time of review, which do not include details of pedestrian and bicycle facilities. As more detailed pedestrian and bicycle facility plans become available, LAWA will determine design considerations in consultation with LADOT staff. **Table 9** summarizes the intersection modifications proposed as part of the Project that are relevant to this analysis. Project modifications relevant to vulnerable road user safety have been grouped into four primary categories: - **Approach and Access Changes:** A change in the number of approaches or points of access affects bicycle and pedestrian crossings, as well as potential conflict points with vehicles. - **Intersection Control:** A change in intersection control can affect bicycle and pedestrian crossings, separation of modes, and may change driver yielding behavior. - Lane Reconfiguration: A change in vehicle capacity may affect the space available for bicycle or pedestrian facilities, vehicular conflict points, and vehicular exposure experienced by vulnerable roadway users (e.g., pedestrian crossing distance) - **Exposure:** Vehicle volume changes at an intersection may affect exposure for pedestrians and bicyclists. **Table 9: Proposed Project Intersection Modifications** | Intersection | Project Modifications | | | | | | | |--|---|--|--|--|--|--|--| | 96 th Street/Sepulveda Boulevard ¹ | Approach and Access Changes: Converted from a four- to three-leg intersection through removal of the west leg. Intersection Control: New signal at intersection, including signalization of westbound right turns (currently free rights). Lane Reconfiguration: Reduced from four to three lanes in both the northbound and southbound directions. Additional westbound right lane, for total of two right lanes. Exposure: Expected increase in northbound through vehicle volume. | | | | | | | | 96 th Street/Vicksburg Avenue | Approach and Access Changes: North leg of intersection removed. Westbound and eastbound traffic separated; south leg becomes right-in/right-out only. Intersection Control: Signal removed from intersection. Lane Reconfiguration: No changes proposed. Exposure: No sizable vehicle volume changes expected, aside from those associated with removal of north leg. | | | | | | | **Table 9: Proposed Project Intersection Modifications** | Intersection | Project Modifications | |---|--| | 98 th Street/Vicksburg Avenue | Approach and Access Changes: North leg of intersection removed. Intersection Control: No changes proposed. Lane Reconfiguration: No changes proposed. Exposure: No sizable vehicle volume changes expected, aside from those associated with removal of north leg. | | Century Boulevard/Sepulveda Boulevard | Approach and Access Changes: Converted from a four- to three-leg intersection through removal of the west leg. Intersection Control: No changes proposed. Lane Reconfiguration: Westbound through lane converted to left-turn lane. Southbound right turn slip lane removed (due to closure of west leg). Exposure: Primary access to the airport is proposed to be relocated north of this intersection, thus increasing northbound through movement volume. | | Century Boulevard/Jetway Boulevard ² | Approach and Access Changes: Converted from a three- to fourleg intersection through the addition of the south leg with two northbound through lanes and a right-turn lane. Intersection Control: No changes proposed. Lane Reconfiguration: Southbound approach of intersection converted from a two- to three-lane approach: one right-turn lane, one through lane, and one left-turn lane. Westbound approach converted to one left-turn lane, three through lanes, and one shared through/right lane. Eastbound approach converted to four through lanes and one right-turn lane. The eastbound double left-turn lanes proposed as part of the LAX Landside Access Modernization Program are removed as part of this project. Exposure: Sizable vehicle volume change not expected. | | Century Boulevard/Avion Drive | Approach and Access Changes: No changes proposed. Intersection Control: No changes proposed. Lane Reconfiguration: Eastbound right-turn lane converted to through/right lane. Exposure: Sizable vehicle volume change not expected. | #### Notes: - 1. The LAX Landside Access Modernization Program roadway improvements documented in the *Landside Access Modernization Program EIR* show this intersection becoming signalized. - 2. Analysis of modifications based on future intersection approved as part of the LAX
Landside Access Modernization Program. The LAX Landside Access Modernization Program roadway improvements documented in the *Landside Access Modernization Program EIR* includes the new, signalized intersection at Century Boulevard/Jetway Boulevard. Source: CDM Smith, January 2020. #### Safety Evaluation A collision history summary was compiled for the most recent five years of collision data (2015-2019). The collisions were organized by number of severe injuries and fatalities, by mode, and by segment or intersection location. This summary does not include Property Damage Only collisions or collisions that took place on airport property. However, per information provided by the LAWA Police Division, no "killed or severely injured" (KSI) collisions have been reported on CTA ramps in the last five years. **Table 10** provides a summary of historic intersection collision data by number of severe injuries and fatalities, and by mode. **Table 11** provides a summary of historic segment collision data. **Table 10: Intersection Injury Collision Summary, 2015-2019** | Intersection (Collisions within
100 feet of intersection) | Total
Collisions | Killed or
Severely
Injured (KSI)
Collisions | Bicycle-
Involved
Collisions | Pedestrian-
Involved
Collisions | Vehicle
Collisions | |--|---------------------|--|------------------------------------|---------------------------------------|-----------------------| | Century Boulevard/Sepulveda
Boulevard | 57 | 4 | 0 | 3 | 54 | | Century Boulevard/Vicksburg
Avenue | 15 | 1 | 3 | 6 | 6 | | Century Boulevard/Avion Drive | 20 | 1 | 2 | 4 | 14 | | 98th Street/Vicksburg Avenue | 3 | 0 | 0 | 1 | 2 | | 96th Street/Sepulveda Boulevard | 2 | 0 | 0 | 1 | 1 | | 96th Street/Vicksburg Avenue | 27 | 2 | 1 | 2 | 24 | Note: Only locations with proposed modifications are shown. Source: UC Berkeley SafeTREC Transportation Injury Mapping System (TIMS), 2015-2019. **Table 11: Segment Injury Collision Summary, 2015-2019** | Intersection (Collisions within 100 feet of intersection) | Total
Collisions | Killed or
Severely
Injured (KSI)
Collisions | Bicycle-
Involved
Collisions | Pedestrian-
Involved
Collisions | Vehicle
Collisions | |--|---------------------|--|------------------------------------|---------------------------------------|-----------------------| | Little Century from Sky Way
to Sepulveda Boulevard | 0 | 0 | 0 | 0 | 0 | | Century Boulevard from
Sepulveda Boulevard to
Vicksburg Avenue | 4 | 0 | 0 | 0 | 4 | | Century Boulevard from
Vicksburg Avenue to Avion Drive | 10 | 0 | 1 | 1 | 8 | | Sepulveda Boulevard from
Century Boulevard to 98th Street | 0 | 0 | 0 | 0 | 0 | | Sepulveda Boulevard from 98th
Street to 96th Street | 0 | 0 | 0 | 0 | 0 | | 98th Street from Sepulveda
Boulevard to Vicksburg Avenue | 1 | 0 | 0 | 1 | 0 | | 98th Street from Vicksburg
Avenue to Avion Drive | 2 | 0 | 0 | 0 | 2 | | 96th Street from Sepulveda
Boulevard to Vicksburg Avenue | 0 | 0 | 0 | 0 | 0 | | 96th Street from Vicksburg
Avenue to Avion Drive | 9 | 0 | 0 | 0 | 9 | | Vicksburg Avenue from
98th Street to Century Boulevard | 1 | 0 | 1 | 0 | 0 | Source: UC Berkeley SafeTREC Transportation Injury Mapping System (TIMS), 2015-2019. After analyzing the historic collision data, countermeasures and crash reduction factors in **Table 12** were identified and associated with the proposed Project's geometric roadway changes. For this analysis, "countermeasures" are defined infrastructure-oriented safety treatments and strategies that are part of a roadway design. Countermeasures identified in **Table 12** are currently included in the proposed Project design. Due to the conceptual nature of the current plans, two high-level countermeasures are identified as being a part of the proposed Project: corridor access management and installation of signals. The countermeasures referenced are documented in either the FHWA Proven Safety Countermeasures ("Proven Safety Countermeasures - Safety." US DOT – FHWA Office of Safety, 2021, https://safety.fhwa.dot.gov/provencountermeasures) or as part of the *Local Roadway Safety: A Manual for California's Local Road Owners* (Caltrans, April 2020). The source is noted for each, along with an associated crash reduction factor documented by either FHWA or Caltrans. A summary of each of these countermeasures is included below. #### Access Management According to FHWA's Proven Safety Countermeasures resource, access management refers to the design, application, and control of entry and exit points along a roadway. Access management includes limited-movement designs, intersection leg/driveway closure, raised medians that preclude across-roadway movements, or intersection design that reduce left-turn conflicts. FHWA quantifies the safety benefit for access management along urban/suburban arterials as a 25 to 31 percent reduction in injury and fatal crashes. #### **Install Signals** Local Roadway Safety: A Manual for California's Local Road Owners (LRSM) notes that installing traffic signals at unsignalized locations, when warranted per the California Manual on Uniform Traffic Control Devices (CA MUTCD), can be used to prevent the most severe types of crashes, right-angle and left-turn crashes. Caltrans documents the safety benefit for the installation of signals as a reduction of 30 percent for all collisions within the influence area of the new signal. **Table 12: Safety Countermeasures in Proposed Roadway Changes** | Geometric Change | Associated Countermeasure | Crash Reduction Factor ¹ | |---|---|-------------------------------------| | 96th Street/Sepulveda Boulevard | | | | West leg of intersection removed | Corridor Access Management
(FHWA Proven Safety
Countermeasures ²) | 25-31% | | New signal at intersection | Install Signals (LRSM ³) | 30% | | 96th Street/Vicksburg Avenue | | | | North leg of intersection removed
Westbound and eastbound traffic separated
South leg becomes right-in/right-out only | Corridor Access Management
(FHWA Proven Safety
Countermeasures) | 25-31% | | Century Boulevard/Sepulveda Boulevard | | | | West leg of intersection removed
Southbound right-turn slip lane removed | Corridor Access Management
(FHWA Proven Safety
Countermeasures) | 25-31% | | Century Boulevard/Jetway Boulevard | | | | Eastbound left turn lanes removed, and left turns eliminated | Corridor Access Management
(FHWA Proven Safety
Countermeasures) | 25-31% | #### Notes: - 1. FHWA defines a crash reduction factor (CRF) as the percentage crash reduction that might be expected after implementing a given countermeasure at a specific site. For example, the use of corridor access management along urban and suburban arterials may result in a 25-31% reduction in injury and fatal crashes. - 2. Countermeasure and Crash Reduction Factor from Federal Highway Administration Office of Safety Proven Safety Countermeasures list, https://safety.fhwa.dot.gov/provencountermeasures/ - 3. Countermeasure and Crash Reduction Factor from *Local Roadway Safety: A Manual for California's Local Road Owners*, Caltrans, https://dot.ca.gov/-/media/dot-media/programs/local-assistance/documents/hsip/2020/lrsm2020.pdf Source: Fehr & Peers, 2020. Additional safety countermeasures may be incorporated as LAWA develops detailed plans. Specific recommendations related to this safety evaluation were not crafted due to limited detailed engineering concepts available at the time of the analysis. #### **Passenger Loading Evaluation** Relative to the proposed Project, Terminal 9 would provide for passenger loading by including arrivals/departures curbs that would be appropriately sized and managed. Concourse 0 would not have a curbside, but rather passengers would use the curbs at Terminal 1, which would also be actively managed. In the event there were to be curbside congestion at Terminal 9 or Terminal 1 due to passenger loading, it is estimated that the queue backup would not extend onto public streets and could be accommodated within the storage capacity of the Project roadway system. #### **Recommended Actions** LADOT's *Transportation Assessment Guidelines* require transportation projects to develop a series of corrective actions to address deficiencies in the transportation network that a project is expected to contribute to and as identified through the Project Access, Safety, and Circulation Evaluation. **Table 13** summarizes the recommended corrective actions for the Project-related queueing deficiencies identified through the operations analysis. Recommended corrective actions include specific intersection treatments related to lane configuration, as well as area-wide recommendations, including recommended Transportation Demand Management (TDM) and Transportation System Management (TSM) strategies. **Table 14** provides a summary of the level of service and queueing analysis at the deficient locations with the implementation of the recommended intersection treatments. As can be seen, the corrective actions result in an improvement in operations and adequately address the deficiency. Table 13: Recommended Corrective Actions for Project-Related Queueing Deficiencies¹ | # | Study Intersection | Project-Related
Queueing
Deficiency Location | Recommended Corrective Actions ² |
Queueing
Deficiency
Addressed? | | |-----|---|--|--|--------------------------------------|--| | 5 | Sepulveda Boulevard/
96 th Street | • WBR, NBT ³ | • Lane Re-Configuration: Consider adding a third westbound right lane and a northbound through/right pocket. | √4 | | | Tre | ansportation System Mai | nagement | • Transportation System Management (TSM): Work with LADOT to determine and install the specific TSM upgrades necessary at signalized intersections along Sepulveda Boulevard between Manchester Avenue and Imperial Highway. | NA | | | Tro | avel Demand Manageme | ent | Transit: Expand on demand micro transit program from five to ten-mile radius around LAX Transit: Continue ongoing evaluation and enhancement of FlyAway service, which could result in improved headways and coverage Transit: Explore providing subsidized transit passes to employees via the Transportation Management Organization and work with airlines and other airport operators to promote mass transit options for passengers as part of ticketing or frequent flyer programs. Bicycle Infrastructure: Target employees that live in zip codes within 5 miles of the airport for a commute mode shift to biking. Promote the use of the APM as the first-mile/last-mile connection between the airport and bike storage and other facilities at ITF. | NA | | #### Notes: - 1. Study intersections not discussed were not found to have Project-related queueing deficiencies. Recommended actions at individual intersection locations are based off aerial imagery and conversations with LAWA. - 2. Proposed signal modifications and lane reconfigurations would require further engineering and operational analysis and approval from LADOT and/or Caltrans prior to installation. - 3. Project-related queueing deficiencies were identified through isolated intersection analyses. Deficiencies identified in through movements on the Sepulveda Boulevard corridor should be further analyzed with microsimulation to better understand how queueing impacts the adjacent intersections. - 4. **Table 14** provides the level of service and queueing results with the recommended corrective actions in place. The LADOT TAG's guidance only identifies deficiencies for intersections operating at LOS D or worse. As shown in **Table 14**, these recommended corrective actions improve overall level of service to LOS C and therefore the Project-related queueing deficiencies are fully addressed. However, 95th percentile queue lengths for the northbound through movement in the AM peak hour would likely still exceed existing storage capacity with the corrective actions. Microsimulation should be done to understand the impact that this has on the adjacent Sepulveda Boulevard/Century Boulevard intersection. The Synchro 10 LOS and queueing worksheets for the intersection with the corrective actions in place is included in **Appendix G**. Source: Fehr & Peers, 2020. Table 14: LOS and Queueing with Corrective Action at Deficient Locations¹ | | Study Intersection | | 2028 with Project | | | | 2028 with Corrective Actions ² | | | | | _ | |---|--|--------------------|-----------------------|--------------------------------|--------------------|---|---|-----------------------|--------------------------------|---|--------------------|--------------------------| | # | | Level of | | Stavana | | 95 th Percentile
Queue Length | | | Ct | 95 th Percentile Queue Length ⁴ | | | | # | | Service
(AM/PM) | Movement ² | Storage
Length ³ | AM
Peak
Hour | PM
Peak
Hour | Service
(AM/PM) | Movement ² | Storage
Length ³ | AM
Peak
Hour | PM
Peak
Hour | Deficiency
Addressed? | | _ | Sepulveda
5 Boulevard/
96th Street | F /F | WBR | 575 | 700 | 600 | 6/6 | WBR | 575 | 450 | 400 | ✓ | | 5 | | F/F | NBT | 1,000 | 1,575 | 1,525 | C/C | NBT | 1,000 | 1,050 | 875 | ✓ | #### Notes: - 1. Level of service and queue lengths are only shown for locations where a Project-related deficiency was identified. "Key turning movements" are shown in **bold**. Locations with Project-related deficiencies are shown in **red text**. The 95th percentile queue length is a conservative assumption commonly employed for intersection design considerations and does not represent the typical queue length that an average driver would experience. - 2. Corrective actions analyzed include those identified in **Table 13** for this specific location. To be conservative, this assessment does not include any of the recommended area-wide recommendations or travel demand management strategies. - 3. Movement acronyms represent the cardinal direction (first two letters) and the turn movement (last letter). For example, NBL=Northbound-left movement, NBR = Northbound-right movement, and NBT = Northbound-through movement. - 4. Storage lengths and queues are shown in feet and rounded up to the nearest 25. - 5. The LADOT TAG's guidance only identifies deficiencies for intersections operating at LOS D or worse. Since the recommended corrective actions improve overall level of service to LOS C, the Project-related queueing deficiencies are fully addressed. However, 95th percentile queue lengths for the northbound through movement in the AM peak hour would likely still exceed existing storage capacity with the corrective actions. Microsimulation should be done to understand the impact that this has on the adjacent Sepulveda Boulevard/Century Boulevard intersection. The Synchro 10 LOS and queueing worksheets for the intersection with the corrective actions in place is included in **Appendix G**. Source: Fehr & Peers, 2020. #### **Transportation System Management** A series of signal system upgrades at intersections along Sepulveda Boulevard between Manchester Avenue and Imperial Highway are recommended to enhance LADOT's ability to remotely monitor traffic conditions and adjust signal timing parameters in real time when congested conditions are observed. The following intersections were identified for improvements in conversation with LADOT: - Sepulveda Boulevard/Manchester Avenue - Sepulveda Boulevard/La Tijera Boulevard - Sepulveda Boulevard/Westchester Parkway - Sepulveda Boulevard/Lincoln Boulevard - Sepulveda Boulevard/96th Street - Sepulveda Boulevard/Century Boulevard - Sepulveda Boulevard/I-105 Westbound Off-ramps - Sepulveda Boulevard/Imperial Highway Specific upgrades will be determined based on the need of each intersection, but will include enhancements such as: - Closed-circuit television (CCTV) cameras (The proposed Project will implement CCTV at the Sepulveda Boulevard/96th Street intersection. All other intersections listed above will have CCTV installed through the Landside Access Modernization Program.) - Back-up batteries - Signal interconnect - Advanced signal system loops - 100 mile-per-hour wind load traffic signal poles - Accessible pedestrian signals (APS) - ADA-compliant curb ramps - High-visibility crosswalk striping Together with the TDM improvements described in **Table 13**, these upgrades would help facilitate traffic flows along Sepulveda Boulevard. The Landside Access Modernization Program (LAMP) will provide traffic signal hardware components which will enable the monitoring required to accommodate real-time and adaptive operation of the traffic signal system around LAX. The proposed upgrades along Sepulveda Boulevard enable system-wide benefits when coupled with upgrades already implemented by LADOT and those that will be installed by the LAMP project. Enhancements proposed on intersections along State Route 1 and within Caltrans' jurisdiction may require a Caltrans encroachment permit prior to installation. LAWA's contribution for the signal system investments is expected to be approximately \$3,000,000. #### **Roadway Safety Enhancements** Specific recommendations related to the safety evaluation were not developed due to limited detailed engineering concepts available at the time of the analysis. It is recommended that LAWA develop detailed plans in accordance with documented safety best practices and the City of Los Angeles guidelines. These guidelines include: - The City of Los Angeles Complete Streets Design Guide - The City of Los Angeles Supplemental Street Design Guide (May 2020) - Bureau of Engineering (BOE) Street Design Manual and Standard Plans - Department of Transportation (LADOT) Manual on Policies and Procedures As more detailed roadway, pedestrian, and bicycle facility plans become available, it is recommended that LAWA determine design considerations to enhance safety for vulnerable roadway users in consultation with LADOT staff. These design elements may include safety countermeasures with documented crash reduction factors, within the following categories: - Striping and pavement markings (e.g., high visibility marked crosswalks, advance stop bars) - Pedestrian crossing improvements (e.g., straightened
or shortened crosswalks, median refuge islands, enhanced crossing signage) - Signal phasing (e.g., protected turn phases, separated pedestrian or bicycle phases, yellow and all-red intervals) - Signal timing (e.g., leading pedestrian interval, shortened cycle lengths, increased crossing time) - Signal hardware (e.g., retroreflective backplates, advanced dilemma zone detection) - Bicycle facilities (e.g., Class I bicycle path, Class IV separated bicycle facilities, bicycle boxes) ### **Project Construction** The proposed Project was assessed to understand how activities associated with Project construction may affect existing pedestrian, bicycle, transit, or vehicle circulation. This assessment follows the evaluation methodology outlined in the LADOT TAG. Much of the evaluation methodology and associated evaluation criteria set for in the LADOT TAG for assessing construction effects is directed towards projects where detailed construction plan information has been developed. While the purpose and overall characteristics of the proposed ATMP have been defined at this time, the Project is still at the conceptual design stage of planning and, as a result, certain aspects of the LADOT TAG evaluation that pertain to detailed construction plans cannot be fully addressed at this time. Much of the evaluation presented herein is provided at a conceptual level of analysis and is qualitatively assessed. #### Methodology The methodology defined in the LADOT TAG was used to assess potential Project-related deficiencies associated with Project construction. A set of screening criteria was reviewed to determine if further analysis is required to evaluate whether the Project could negatively affect existing pedestrian, bicycle, transit, or vehicle circulation. The additional evaluation coming out of the screening assessment took into consideration factors such as the location of the Project site, the functional classification of nearby streets, the availability of alternate routes or additional capacity, temporary loss of bicycle parking, temporary loss of bus stops or rerouting of transit lines, the duration of temporary loss of access, and whether there are emergency services (fire, hospital, etc.) located nearby that regularly use the affected streets. #### **Screening Criteria** Section 3.4.2 of the LADOT TAG sets forth several questions as screening criteria to determine the level of analysis required relative to construction impacts; a "yes" answer to any of the questions requires that further analysis be provided whereas if the answer is "no" to all the questions, no further analysis is required. These criteria include, among other things, considerations such as whether construction activities would require the closure of certain street types for more than one day; the loss of regular vehicle, bicycle, or pedestrian access for more than one day; or the temporary loss of an existing bus stop or rerouting of a bus stop that serves the project site for more than one day. Although detailed construction plans for the Project have not yet been developed, it is anticipated that such temporary closures or losses would occur, based on the location and scale of the roadway system improvements that are proposed. As such, a further evaluation of construction impacts was completed, as presented below. #### **Evaluation** The Project was assessed to determine whether construction of the Project would substantially interfere with pedestrian, bicycle, transit, or vehicle circulation and accessibility to adjoining areas. Provided below, shown in italics, are the criteria set forth in the LADOT TAG for the further analysis of construction effects, along with a discussion the Project's effect related to those criteria. #### 1. Temporary transportation constraints: - The length of time of temporary street closures or closures of two or more travel lanes; - The classification of the street (major arterial, state highway, substandard hillside local or collector, etc.) affected; - The existing congestion levels on the affected street segments and intersections; - The operational constraints of substandard hillside streets needing to access construction sites; - Whether the affected street directly leads to a freeway on- or off-ramp or other state highway; - Potential safety issues involved with street or lane closures; and - The presence of emergency services (fire, hospital, etc.) located nearby that regularly use the affected street. Project Effect: The Project would result in temporary transportation constraints in the form of temporary roadway and/or lane closures. The current conceptual level of design for the Project does not enable the exact times or durations to be determined at this time, nor the specific lane closure lengths, design, or phasing approach. In general, roadway/lane closures would include, but may not be limited to: temporary closure(s) of 96th Street between Sepulveda Boulevard and Jetway Boulevard in conjunction with realignment of that roadway segment; permanent closure of Vicksburg Avenue between 98th Street and the City Los Angeles Department of Water and Power (DWP) substation north of 98th Street and temporary closure of Vicksburg Avenue between the DWP substation and 96th Street; temporary closures of 98th Street between Sepulveda Boulevard and Jetway Boulevard during construction of the elevated ramps proposed north of and at the east end of that roadway segment; temporary closures of Century Boulevard between Jetway Boulevard and Vicksburg Avenue during construction of the elevated ramps and at-grade ramps proposed in that general area; and permanent closure of the ramps adjacent to Sepulveda Boulevard south of Century Boulevard. The permanent closure of Sky Way, including both the bridge over Sepulveda Boulevard and the off-ramps from southbound Sepulveda Boulevard, would be closed as part of the previously approved LAX Landside Access Modernization Program. In addition, it is anticipated that temporary lane closures on Sepulveda Boulevard would likely be required during construction of the new flyover ramps from and to southbound Sepulveda Boulevard. For each of the temporary closures, a detour plan, as part of a maintenance of traffic (MOT) plan, would be prepared and implemented, as coordinated with LADOT and with LAWA's Coordination and Logistics Management (CALM) Team, to maintain traffic flows in the local area. It is anticipated that the MOTs for the various roadway system improvements would include a Site Logistics Plan that identifies construction access/egress, staging, laydown, haul routes, and additional provisions to ensure that access routes are preserved during construction. As necessary, this would also include rerouting inbound/outbound traffic, assigning motorists to the Intermodal Transportation Facility (ITF) West and/or ITF East, and redirecting motorists to active and open ramps and access ways. Access would be assisted by the use of real-time/dynamic Traffic Access Management Systems, including permanent and portable changeable message signs and a signage program. Finally, construction activities would be subject to requirements in the 2020 LAWA Design and Construction Handbook (LAWA, 2020), including measures to control contractor work hours, lane closures, traffic detour plans, construction traffic staging, and construction deliveries and haul routes. Project construction would not result in impacts to emergency services. Although temporary lane closures at and near the CTA entrance would be required to facilitate construction activities, LAWA's Design and Construction Handbook specifies that a Site Logistics Plan and fully documented Logistical Work Plan Checklist be developed for construction projects. Required information includes, but is not limited to, identification of emergency access provisions, emergency evacuation routes, and 24-hour emergency contact information. Further, LAWA would coordinate with the Los Angeles Fire Department and LAWA Police Division regarding emergency access and other design needs to ensure that emergency service levels are maintained during construction. In accordance with standard LAWA practice, emergency access routes in the vicinity of the Project site would be kept clear and unobstructed at all times during the construction period. #### 2. Temporary loss of access: - The length of time of any loss of pedestrian or bicycle circulation past a construction area; - The length of time of any loss of vehicular, bicycle, or pedestrian access to a parcel fronting the construction area: - The length of time of any loss or impedance of access by emergency vehicles or area residents to hillside properties; - The length of time of any loss of Americans with Disabilities Act (ADA) pedestrian access to a transit station, stop, or facility; - The availability of nearby vehicular or pedestrian access within ¼ mile of the lost access; - The type of land uses affected, and related safety, convenience, and/or economic issues. Project Effect: A detailed discussion of pedestrian, bicycle, and transit access is provided earlier in this report. As discussed therein, Project construction would require temporary loss of access for some pedestrian and bicycle circulation routes. The Project would realign sidewalks along 96th Street in conjunction with the realignment of that street, temporarily limiting pedestrian access during construction. In addition, although the Project would require the removal of existing bicycle lanes on 96th Street, the LAX Landside Access Modernization Program already identified the need to remove these bicycle lanes and includes replacement facilities in the form of new bicycle and multi-use paths in the Project vicinity. The Project may also include construction along the landscaped area on Sepulveda Boulevard and Century Boulevard due to construction of new ramps. Although the construction work may cause temporary disruptions to access,
alternative routing and detours would be identified and marked where feasible in coordination with the City of Los Angeles Department of Building and Safety and LADOT. #### 3. <u>Temporary Loss of Bus Stops or Rerouting of Bus Lines:</u> - The length of time that an existing bus stop would be unavailable or that existing service would be interrupted; - The availability of a nearby location (within 1/4 mile) to which the bus stop or route can be temporarily relocated; - The existence of other bus stops or routes with similar routes/destinations within a 1/4-mile radius of the affected stops or routes; and - Whether the interruption would occur on a weekday, weekend or holiday, and whether the existing bus route typically provides service that/those day(s). <u>Project Effect:</u> As discussed earlier in this report, the Project may require repositioning of two bus stops on 96th Street in conjunction with the proposed realignment of a portion of that street. The repositioning of the bus stops would be coordinated with the affected transit operator(s), and bus service in the area would continue during the construction period and after construction is complete. In addition, transit stops along Sepulveda Boulevard and Century Boulevard may require temporary closure during the construction period, however, no permanent changes would be required to the stops. Furthermore, there are several planned improvements to the existing transit services, including ongoing Metro efforts to construct the Metro Crenshaw/LAX Line that will include a station near the Aviation Boulevard/Arbor Vitae Street intersection. In addition, the APM and transit consolidation improvements are proposed as part of the LAX Landside Access Modernization Program. #### **Recommended Actions** Based on the above assessment of pedestrian, bicycle, and transit access, construction of the Project would have a limited negative effect on pedestrian, bicycle, transit, and vehicle circulation in the vicinity of the proposed Project and would require recommended actions. As discussed, detailed design concepts are not available at this time, and will be developed in accordance with documented safety best practice and City of Los Angeles guidelines, including: - The City of Los Angeles Complete Streets Design Guide - The City of Los Angeles Supplemental Street Design Guide (May 2020) - Bureau of Engineering (BOE) Street Design Manual and Standard Plans - Department of Transportation (LADOT) Manual on Policies and Procedures Notwithstanding that specific measures to avoid or minimize construction-related deficiencies would be identified in conjunction with future detailed construction plans, the following corrective actions for the Project are recommended at this time: • In conjunction with development of MOTs for the proposed roadway improvements, LAWA will coordinate with LADOT and other appropriate agencies in preparation of a Site Logistics Plan and fully documented Logistical Work Plan Checklist in accordance with LAWA's Design and Construction Handbook. LAWA will consult with LADOT if temporary closure of a travel lane may be necessary to stage equipment in the public right-of-way. - LAWA will coordinate with emergency service and public transit providers. - LAWA will provide alternative vehicular, bicycle, and/or pedestrian access to affected parcels where feasible and will consult with LADOT if temporary closure of a travel lane may be necessary to maintain adequate pedestrian and bicycle access as part of the traffic management plan. - LAWA will coordinate with adjacent property owners and tenants to ensure property access is preserved during construction. - LAWA will coordinate with transit service providers regarding maintenance of ADA access to transit stations, stops, and transit facilities (e.g., layover zones) during revenue hours. - LAWA will coordinate with transit providers regarding the need to temporarily close or relocate bus stops or reroute service. # Appendix A: LAX ATMP non-CEQA Existing Conditions Operational Assessment ## Memorandum Date: February 2021 Subject: Appendix A: LAX Airfield and Terminal Modernization Project non-CEQA **Existing Conditions Operational Assessment** LA19-3119.00 This memorandum presents outcomes from the existing conditions operational evaluation for the Airfield and Terminal Modernization Project (ATMP) at Los Angeles International Airport (LAX). Under Senate Bill 743 and the *Transportation Assessment Guidelines* (City of Los Angeles Department of Transportation, 2020), the operational evaluation performed for the ATMP (Project) is not for consideration under the California Environmental Quality Act (CEQA) and is instead provided for information purposes only. The proposed Project is not evaluated under existing conditions as the study area is expected to change significantly due to the LAX Landside Access Modernization Program between now and the completion of the proposed Project. Therefore, the proposed Project conditions are only evaluated and compared against future baseline conditions. However, existing conditions were still evaluated to understand how the roadway is currently operating today. The results of the existing conditions evaluation are documented in this memorandum. Existing conditions are defined as 2019 Conditions, or the traffic and roadway conditions in Year 2019 without the proposed Project. #### **Study Intersection Locations** The list of study intersections was developed in conjunction with LADOT staff and based on guidance provided in LADOT's *Transportation Assessment Guidelines*. The LADOT TAG specifies that intersections immediately adjacent to the project and in proximity to the project through which 100 or more project-generated trips would travel should be analyzed. The study intersections meeting that criterion are listed in **Table 1** and shown on **Figure 1**. **Table 1: Study Intersections** | Intersection
| Study Intersections | |-------------------|---| | 1 | Sepulveda Boulevard/Manchester Avenue | | 2 | Sepulveda Boulevard/La Tijera Boulevard | | 3 | Sepulveda Boulevard/Westchester Parkway | | 4 | Sepulveda Boulevard/Lincoln Boulevard | | 5 | Sepulveda Boulevard/96 th Street | | 6 | Sepulveda Boulevard/Century Boulevard | | 7 | Sepulveda Boulevard (northbound)/ I-105 Westbound Off-Ramp | | 8 | Sepulveda Boulevard/Imperial Highway | | 9 | Jetway Boulevard/Westchester Parkway (new intersection in Projected Future Conditions) ¹ | | 10 | Jetway Boulevard/Century Boulevard (new intersection in Projected Future Conditions) ¹ | | 11 | Airport Boulevard/Westchester Parkway/Arbor Vitae Street | | 12 | Airport Boulevard/96 th Street | | 13 | Airport Boulevard/Century Boulevard | | 14 | Aviation Boulevard/Century Boulevard | | 15 | La Cienega Boulevard/Century Boulevard | | 16 | La Cienega Boulevard (south of Century Boulevard)/I-405 Southbound ramps | #### Note: 1. These two intersections will be built as part of the LAX Landside Access Modernization Program. They do not exist under Existing Conditions. Source: Fehr & Peers, 2020. **Study Intersections** **LAX Airfield and Terminal Modernization Project** *Jetway Boulevard Future Alignment shown is not exact; it is shown for information purposes only. **Study Intersections** Figure 1 #### **Analysis Methodology** Traffic operations, including intersection level of service (LOS) and queueing, were evaluated using the *Highway Capacity Manual* (HCM) and Synchro 10 software. The methodology employed is in line with guidance provided in the *Transportation Assessment Guidelines*. LADOT typically considers LOS A through D as acceptable operating conditions. This operations analysis reports the 95th percentile queue lengths (in feet) for all key turning movements and intersection control delay (in seconds) along with the corresponding level of service for each study intersection. "Key turning movements" are defined as movements where the 95th percentile queue length exceeds the existing storage capacity. 95th percentile queue length is defined as the queue length that has only a five-percent probability of being exceeded during the analyzed peak period. The 95th percentile queue length is a conservative assumption commonly employed for intersection design considerations and does not represent the typical queue length an average driver would experience. #### **Level of Service Methodology** This analysis uses the Transportation Research Board's *Highway Capacity Manual, 6th Edition* (HCM) methodology to evaluate intersection level of service and delay at both signalized and unsignalized intersections. The calculation of delay represents the amount of delay experienced by vehicles passing through the intersection. At signalized and all-way stop intersections, the delay and corresponding LOS represent the average delay experienced. For two-way stop intersections, the delay and corresponding LOS represent the worst-case approach. HCM level of service thresholds for signalized and unsignalized intersections are presented in **Table 2**. **Table 2: LOS Thresholds for Signalized and Unsignalized Intersections** | Level of
Service
(LOS) | LOS Definition ¹ | Signalized
Intersection
Average Control
Delay ² | Unsignalized
Intersection
Average Control
Delay ² | |------------------------------|--|---|---| | А | Excellent. No vehicle waits longer than one red light and no approach phase is fully used. | <u><</u> 10.0 | <u><</u> 10.0 | | В | Very good. An occasional approach phase is fully
utilized; many drivers begin to feel somewhat restricted within groups of vehicles. | > 10.1 to 20.0 | > 10.1 to 15.0 | | С | Good. Occasionally drivers may have to wait through
more than one red light; backups may develop behind
turning vehicles. | > 20.1 to 35.0 | > 15.1 to 25.0 | | D | Fair. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups. | > 35.1 to 55.0 | > 25.1 to 35.0 | | E | Poor. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles. | > 55.1 to 80.0 | > 35.1 to 50.0 | | F | Failure. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths | > 80.0 | > 50.0 | #### Notes: - 1. Source: *Transportation Research Circular No. 212, Interim Materials on Highway Capacity*, Transportation Research Board, 1980. - 2. Delay shown in seconds per vehicle. Source: *Highway Capacity Manual, 6th Edition* Transportation Research Board, 2016. #### **2019 Conditions** This section presents traffic operations for the weekday AM and PM peak hours at the study intersections in 2019 Conditions. The lane configurations utilized in the analysis represent onthe-ground conditions for each study intersection in 2019. Signal timing and phasing parameters were provided by LADOT. #### 2019 Conditions Turning Movement Volumes Vehicle counts were collected during the weekday morning (7:00 AM to 10:00 AM) and evening (3:00 PM to 6:00 PM) commute periods to define 2019 Conditions. These time periods were selected because they are expected to represent the typical worst traffic conditions. New counts were collected at all study intersections except for the Sepulveda Boulevard/Manchester Avenue intersection, where count data collected for the *Landside Access Modernization Program EIR* (LAWA, 2016) was used. **Table 3** presents the origins of the count data for each study intersection. **Attachment A** includes the intersection turning movement count sheets for each study intersection. **Table 3: Existing 2019 Count Locations** | # | 2019 Conditions Study Intersections | Year of Count | | | | |----|--|---|--|--|--| | 1 | Sepulveda Boulevard/Manchester Avenue | 2015 ¹ | | | | | 2 | Sepulveda Boulevard/La Tijera Boulevard | 2019 | | | | | 3 | Sepulveda Boulevard/Westchester Parkway | 2019 | | | | | 4 | Sepulveda Boulevard/Lincoln Boulevard | 2019 | | | | | 5 | Sepulveda Boulevard/96 th Street | 2019 | | | | | 6 | Sepulveda Boulevard/Century Boulevard | 2019 | | | | | 7 | Sepulveda Boulevard (northbound)/ I-105 Westbound Off-Ramp | 2019 | | | | | 8 | Sepulveda Boulevard/Imperial Highway | 2019 | | | | | 9 | Jetway Boulevard/Westchester Parkway | NA (New future intersection) ² | | | | | 10 | Jetway Boulevard/Century Boulevard | NA (New future intersection) | | | | | 11 | Airport Boulevard/Westchester Parkway/Arbor Vitae Street | 2019 | | | | | 12 | Airport Boulevard/96 th Street | 2019 | | | | | 13 | Airport Boulevard/Century Boulevard | 2019 | | | | | 14 | Aviation Boulevard/Century Boulevard | 2019 | | | | | 15 | La Cienega Boulevard/Century Boulevard | 2019 | | | | | 16 | La Cienega Boulevard (south of Century Boulevard)/I-405 Southbound ramps | 2018 ¹ | | | | #### Notes: - 1. The intersection turning movement counts were grown by an annual growth factor of 1.2% to represent 2019 Conditions. - 2. These two intersections will be built as part of the LAX Landside Access Modernization Program. They do not exist under Existing Conditions. #### 2019 Conditions Level of Service **Table 4** summarizes the 2019 weekday peak hour intersection level of service for the study intersections. **Attachment B** represents the lane configurations and turning movement volumes at each study intersection in 2019 Conditions. **Attachment C** provides the detailed intersection LOS calculation worksheets. Table 4: Existing 2019 Conditions Intersection Levels of Service¹ | ,, | | Traffic | А | М | P | М | |----|--|----------------------|--------------------|-----|--------------------|-----| | # | Study Intersection | Control ² | Delay ³ | LOS | Delay ³ | LOS | | 1 | Sepulveda Boulevard/Manchester
Avenue | Signal | 37 | D | 50 | D | | 2 | Sepulveda Boulevard/La Tijera
Boulevard | Signal | 25 | С | 27 | С | | 3 | Sepulveda Boulevard/Westchester
Parkway | Signal | 20 | В | 17 | В | | 4 | Sepulveda Boulevard/Lincoln Boulevard | Signal | 28 | С | 30 | С | | 5 | Sepulveda Boulevard/96 th Street ⁴ | SSSC | 23 | С | 35 | D | | 6 | Sepulveda Boulevard/Century Boulevard | Signal | 25 | С | 23 | С | | 7 | Sepulveda Boulevard (northbound)/
I-105 Westbound Off-Ramp ⁵ | Signal | >120 | F | 59 | E | | 8 | Sepulveda Boulevard/Imperial Highway | Signal | 30 | С | 33 | С | | 9 | Jetway Boulevard/Westchester Parkway | - | - | - | - | - | | 10 | Jetway Boulevard/Century Boulevard | - | _ | - | - | - | | 11 | Airport Boulevard/Westchester
Parkway/Arbor Vitae Street | Signal | 39 | D | 26 | С | | 12 | Airport Boulevard/96 th Street | Signal | 7 | Α | 12 | В | | 13 | Airport Boulevard/Century Boulevard | Signal | 38 | D | 28 | С | | 14 | Aviation Boulevard/Century Boulevard | Signal | >120 | F | 42 | D | | 15 | La Cienega Boulevard/Century
Boulevard | Signal | 44 | D | 31 | С | | 16 | La Cienega Boulevard (south of Century
Boulevard)/I-405 Southbound ramps ⁵ | Signal | 8 | А | 7 | Α | #### Notes: - 1. Intersection control delay analyzed using HCM 6th Edition and Synchro 10 software unless otherwise noted. For signalized intersections, delay results show the average control delay experienced at the intersection. For side-street stop-controlled intersections, the worst intersection approach delay is presented. - 2. Signal = Signalized intersection; SSSC = Side-Street Stop-Controlled intersection - 3. Delay is presented in seconds per vehicle - 4. The Sepulveda Boulevard/96th Street intersection's eastbound right movement is stop controlled. All other movements are free flow. - 5. Intersection control delay measured using HCM 2000 due to incompatibilities between the intersection configuration and/or signal phasing and Synchro 10's application of HCM 6th Edition. Source: Fehr & Peers, 2020. #### 2019 Conditions Queueing Analysis **Table 5** summarizes the weekday peak hour 95th percentile queues for key turning movements at study intersections in Existing 2019 Conditions. "Key turning movements" are defined as movements where the 95th percentile queue length exceeds the existing storage capacity. Such conditions are shown in bold text in **Table 5**. **Attachment D** provides the detailed queueing reports. Table 5: Existing 2019 Conditions 95th percentile Queuing at Key Movements1 | | | | | 95 th percer | ntile Queue³ | | | | |----|--|-----------------------|--------------------------------|-------------------------|-----------------|--|--|--| | # | Study Intersection | Movement ² | Storage
Length ³ | AM Peak
Hour | PM Peak
Hour | | | | | | | WBR | 150 | 250 | 100 | | | | | 1 | Sepulveda Boulevard/Manchester Avenue | SBL | 200 | 150 | 575 | | | | | | | SBT | 575 | 375 | 675 | | | | | | | EBL | 75 | 75 | 100 | | | | | 2 | Consultado Boulovard // a Tijora Boulovard | WBL | 200 | 300 | 150 | | | | | 2 | Sepulveda Boulevard/La Tijera Boulevard | NBT | 400 | 450 | 325 | | | | | | | NBR | 100 | 100 | 175 | | | | | | Constants Double and Manufacture Double | SBL | 150 | 50 | 175 | | | | | 3 | Sepulveda Boulevard/Westchester Parkway | SBT | 400 | 475 | 400 | | | | | 4 | Sepulveda Boulevard/Lincoln Boulevard | | No key m | ovements | | | | | | 5 | Sepulveda Boulevard/96th Street | No key movements | | | | | | | | 6 | Sepulveda Boulevard/Century Boulevard ⁴ | WBL | 200 | 250 | 375 | | | | | 7 | Sepulveda Boulevard (northbound)/I-105
Westbound Off-Ramp | NBT | 450 | 700 | 575 | | | | | | Constants Barbara (Managish Uisha | NBR | 575 | 200 | 625 | | | | | 8 | Sepulveda Boulevard/Imperial Highway | SBL | 225 | 250 | 200 | | | | | 9 | Jetway Boulevard/Westchester Parkway | | New inte | ersection | | | | | | 10 | Jetway Boulevard/Century Boulevard | | New inte | ersection | | | | | | 11 | Airport Boulevard/Westchester Parkway/Arbor
Vitae Street | NBL | 125 | 150 | 75 | | | | | 12 | Airport Boulevard/96 th Street | WBR | 50 | 75 | 25 | | | | | 13 | Airport Boulevard/Century Boulevard | EBL | 300 | 475 | 275 | | | | | | | EBT | 375 | 350 | 925 | | | | | 14 | Aviation Boulevard/Century Boulevard | WBL | 150 | 175 | 150 | | | | | | | NBL | 350 | 425 | 200 | | | | Table 5: Existing 2019 Conditions 95th percentile Queuing at Key Movements¹ | | | | | 95 th percentile Queue ³ | | | |----|---|-----------------------|--------------------------------|--|-----------------|--| | # | Study Intersection | Movement ² | Storage
Length ³ | AM Peak
Hour | PM Peak
Hour | | | 15 | La Cianaga Baulayard/Cantury Baylayard | WBL | 175 | 300 | 75 | | | 15 | La Cienega Boulevard/Century Boulevard | NBR | 100 | 25 | 300 | | | 16 | La Cienega Boulevard (south of Century
Boulevard)/I-405 Southbound ramps | | No key mo | ovements | | | #### Notes: - Queue lengths shown in **bold** are turning movements where the 95th percentile queue is greater than the existing storage capacity. Turning movements not shown all have 95th percentile queues that can be accommodated within the existing storage capacity. Queue lengths are outputs from the Existing 2019 Synchro 10 AM and PM
peak hour models developed for this Project. The 95th percentile queue length is a conservative assumption commonly employed for intersection design considerations and does not represent the typical queue length that an average driver would experience. - 2. Movement acronyms represent the cardinal direction (first two letters) and the turn movement (last letter). For example, NBL=Northbound-left movement, NBR = Northbound-right movement, and NBT = Northbound-through movement. - 3. Storage lengths and queues are shown in feet and rounded up to the nearest 25 feet. - 4. The Sepulveda Boulevard/Century Boulevard intersection experiences long queue lengths in the northbound direction, however, the existing storage capacity can sufficiently accommodate the queue. More details are provided in Attachment D. Source: Fehr & Peers, 2020. ## Attachment A: Intersection Turning Movement Count Sheets CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W LA TIJERA BOULEVARD | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 15 | 293 | 4 | 2 | 3 | 27 | 55 | 0 | 33 | 444 | 16 | 0 | 16 | 28 | 14 | 0 | 950 | | 715-730 | 16 | 340 | 4 | 1 | 7 | 66 | 59 | 0 | 35 | 418 | 31 | 0 | 23 | 30 | 6 | 0 | 1036 | | 730-745 | 23 | 357 | 5 | 1 | 13 | 118 | 75 | 0 | 42 | 420 | 43 | 0 | 25 | 29 | 9 | 0 | 1160 | | 745-800 | 18 | 315 | 8 | 0 | 8 | 94 | 64 | 0 | 27 | 446 | 35 | 0 | 21 | 57 | 14 | 0 | 1107 | | 800-815 | 23 | 389 | 12 | 3 | 11 | 110 | 68 | 0 | 31 | 391 | 28 | 0 | 29 | 50 | 12 | 0 | 1157 | | 815-830 | 20 | 363 | 4 | 2 | 10 | 75 | 87 | 0 | 37 | 401 | 22 | 0 | 25 | 68 | 18 | 0 | 1132 | | 830-845 | 19 | 359 | 2 | 3 | 12 | 59 | 73 | 0 | 49 | 431 | 24 | 0 | 26 | 49 | 14 | 0 | 1120 | | 845-900 | 20 | 342 | 8 | 1 | 25 | 45 | 78 | 0 | 58 | 475 | 23 | 0 | 22 | 56 | 22 | 0 | 1175 | | 900-915 | 24 | 382 | 6 | 1 | 18 | 60 | 96 | 0 | 26 | 421 | 23 | 0 | 19 | 37 | 12 | 0 | 1125 | | 915-930 | 17 | 331 | 9 | 2 | 18 | 23 | 66 | 0 | 42 | 388 | 16 | 0 | 24 | 26 | 6 | 0 | 968 | | 930-945 | 15 | 321 | 10 | 6 | 10 | 47 | 57 | 0 | 47 | 390 | 15 | 1 | 21 | 36 | 24 | 0 | 1000 | | 945-1000 | 16 | 316 | 14 | 1 | 21 | 42 | 49 | 0 | 29 | 354 | 19 | 0 | 21 | 46 | 13 | 0 | 941 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 72 | 1305 | 21 | 4 | 31 | 305 | 253 | 0 | 137 | 1728 | 125 | 0 | 85 | 144 | 43 | 0 | 4253 | | 715-815 | 80 | 1401 | 29 | 5 | 39 | 388 | 266 | 0 | 135 | 1675 | 137 | 0 | 98 | 166 | 41 | 0 | 4460 | | 730-830 | 84 | 1424 | 29 | 6 | 42 | 397 | 294 | 0 | 137 | 1658 | 128 | 0 | 100 | 204 | 53 | 0 | 4556 | | 745-845 | 80 | 1426 | 26 | 8 | 41 | 338 | 292 | 0 | 144 | 1669 | 109 | 0 | 101 | 224 | 58 | 0 | 4516 | | 800-900 | 82 | 1453 | 26 | 9 | 58 | 289 | 306 | 0 | 175 | 1698 | 97 | 0 | 102 | 223 | 66 | 0 | 4584 | | 815-915 | 83 | 1446 | 20 | 7 | 65 | 239 | 334 | 0 | 170 | 1728 | 92 | 0 | 92 | 210 | 66 | 0 | 4552 | | 830-930 | 80 | 1414 | 25 | 7 | 73 | 187 | 313 | 0 | 175 | 1715 | 86 | 0 | 91 | 168 | 54 | 0 | 4388 | | 845-945 | 76 | 1376 | 33 | 10 | 71 | 175 | 297 | 0 | 173 | 1674 | 77 | 1 | 86 | 155 | 64 | 0 | 4268 | | 900-1000 | 72 | 1350 | 39 | 10 | 67 | 172 | 268 | 0 | 144 | 1553 | 73 | 1 | 85 | 145 | 55 | 0 | 4034 | | PEDESTRIAN | COUNTS | 3 | | | | |---------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 3 | 1 | 4 | | 715-730 | 0 | 0 | 6 | 2 | 8 | | 730-745 | 1 | 1 | 0 | 2 | 4 | | 745-800 | 3 | 3 | 2 | 2 | 10 | | 800-815 | 4 | 4 | 5 | 1 | 14 | | 815-830 | 3 | 3 | 5 | 3 | 14 | | 830-845 | 1 | 1 | 6 | 2 | 10 | | 845-900 | 8 | 8 | 11 | 4 | 31 | | 900-915 | 4 | 4 | 1 | 2 | 11 | | 915-930 | 3 | 3 | 5 | 5 | 16 | | 930-945 | 3 | 3 | 7 | 3 | 16 | | 945-1000 | 8 | 8 | 7 | 8 | 31 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 4 | 4 | 11 | 7 | 26 | | 715-815 | 8 | 8 | 13 | 7 | 36 | | 730-830 | 11 | 11 | 12 | 8 | 42 | | 745-845 | 11 | 11 | 18 | 8 | 48 | | 800-900 | 16 | 16 | 27 | 10 | 69 | | 815-915 | 16 | 16 | 23 | 11 | 66 | | 830-930 | 16 | 16 | 23 | 13 | 68 | | 845-945 | 18 | 18 | 24 | 14 | 74 | | 900-1000 | 18 | 18 | 20 | 18 | 74 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 1 | 0 | 0 | 1 | | 715-730 | 2 | 0 | 1 | 2 | 5 | | 730-745 | 0 | 1 | 1 | 0 | 2 | | 745-800 | 0 | 0 | 0 | 1 | 1 | | 800-815 | 1 | 0 | 0 | 0 | 1 | | 815-830 | 0 | 0 | 0 | 1 | 1 | | 830-845 | 0 | 0 | 0 | 0 | 0 | | 845-900 | 0 | 0 | 0 | 0 | 0 | | 900-915 | 0 | 0 | 0 | 0 | 0 | | 915-930 | 0 | 0 | 0 | 1 | 1 | | 930-945 | 0 | 1 | 0 | 3 | 4 | | 945-1000 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 2 | 2 | 2 | 3 | 9 | | 715-815 | 3 | 1 | 2 | 3 | 9 | | 730-830 | 1 | 1 | 1 | 2 | 5 | | 745-845 | 1 | 0 | 0 | 2 | 3 | | 800-900 | 1 | 0 | 0 | 1 | 2 | | 815-915 | 0 | 0 | 0 | 1 | 1 | | 830-930 | 0 | 0 | 0 | 1 | 1 | | 845-945 | 0 | 1 | 0 | 4 | 5 | | 900-1000 | 0 | 1 | 0 | 4 | 5 | | APPROACH | SUMMAR | IES | | | | | | | | | | |----------|--------|-------|--------|------------|--|-------------|------|-------------|------|------|-------| | | NORTH | APRCH | EAST / | EAST APRCH | | SOUTH APRCH | | SOUTH APRCH | | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | | APRCH | EXIT | APRCH | EXIT | | | | 700-800 | 1402 | 1806 | 589 | 302 | | 1990 | 1643 | 272 | 502 | | | | 715-815 | 1515 | 1760 | 693 | 330 | | 1947 | 1765 | 305 | 605 | | | | 730-830 | 1543 | 1759 | 733 | 370 | | 1923 | 1818 | 357 | 609 | | | | 745-845 | 1540 | 1776 | 671 | 394 | | 1922 | 1819 | 383 | 527 | | | | 800-900 | 1570 | 1831 | 653 | 424 | | 1970 | 1861 | 391 | 468 | | | | 815-915 | 1556 | 1866 | 638 | 400 | | 1990 | 1872 | 368 | 414 | | | | 830-930 | 1526 | 1849 | 573 | 368 | | 1976 | 1818 | 313 | 353 | | | | 845-945 | 1495 | 1819 | 543 | 361 | | 1925 | 1760 | 305 | 328 | | | | 900-1000 | 1471 | 1685 | 507 | 328 | | 1771 | 1704 | 285 | 317 | | | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W WESTCHESTER PARKWAY | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 5 | 349 | 12 | 1 | 89 | 95 | 34 | 0 | 2 | 490 | 38 | 3 | 9 | 12 | 3 | 0 | 1142 | | 715-730 | 8 | 405 | 22 | 0 | 56 | 134 | 37 | 0 | 7 | 455 | 56 | 3 | 14 | 39 | 3 | 0 | 1239 | | 730-745 | 7 | 407 | 24 | 0 | 60 | 163 | 39 | 0 | 7 | 452 | 59 | 0 | 23 | 38 | 1 | 0 | 1280 | | 745-800 | 7 | 379 | 34 | 0 | 61 | 191 | 37 | 0 | 6 | 489 | 47 | 1 | 26 | 60 | 7 | 0 | 1345 | | 800-815 | 17 | 475 | 28 | 0 | 43 | 150 | 42 | 0 | 11 | 443 | 47 | 3 | 18 | 55 | 2 | 0 | 1334 | | 815-830 | 9 | 400 | 35 | 1 | 55 | 109 | 46 | 0 | 5 | 457 | 37 | 3 | 19 | 55 | 5 | 0 | 1236 | | 830-845 | 14 | 439 | 30 | 1 | 61 | 79 | 37 | 0 | 12 | 449 | 32 | 2 | 19 | 57 | 4 | 0 | 1236 | | 845-900 | 15 | 420 | 32 | 2 | 83 | 88 | 49 | 0 | 12 | 481 | 29 | 2 | 23 | 53 | 4 | 0 | 1293 | | 900-915 | 8 | 423 | 42 | 0 | 51 | 65 | 58 | 0 | 13 | 423 | 38 | 2 | 13 | 35 | 6 | 0 | 1177 | | 915-930 | 17 | 387 | 36 | 2 | 34 | 55 | 47 | 0 | 8 | 435 | 32 | 3 | 4 | 27 | 4 | 0 | 1091 | | 930-945 | 11 | 377 | 32 | 0 | 36 | 53 | 32 | 0 | 10 | 390 | 41 | 2 | 15 | 38 | 13 | 0 | 1050 | | 945-1000 | 11 | 347 | 34 | 0 | 36 | 54 | 46 | 0 | 17 | 381 | 20 | 4 | 24 | 38 | 6 | 1 | 1019 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 27 | 1540 | 92 | 1 | 266 | 583 | 147 | 0 | 22 | 1886 | 200 | 7 | 72 | 149 | 14 | 0 | 5006 | | 715-815 | 39 | 1666 | 108 | 0 | 220 | 638 | 155 | 0 | 31 | 1839 | 209 | 7 | 81 | 192 | 13 | 0 | 5198 | | 730-830 | 40 | 1661 | 121 | 1 | 219 | 613 | 164 | 0 | 29 | 1841 | 190 | 7 | 86 | 208 | 15 | 0 | 5195 | | 745-845 | 47 | 1693 | 127 | 2 | 220 | 529 | 162 | 0 | 34 | 1838 | 163 | 9 | 82 | 227 | 18 | 0 | 5151 | | 800-900 | 55 | 1734 | 125 | 4 | 242 | 426 | 174 | 0 | 40 | 1830 | 145 | 10 | 79 | 220 | 15 | 0 | 5099 | | 815-915 | 46 | 1682 | 139 | 4 | 250 | 341 | 190 | 0 | 42 | 1810 | 136 | 9 | 74 | 200 | 19 | 0 | 4942 | | 830-930 | 54 | 1669 | 140 | 5 | 229 | 287 | 191 | 0 | 45 | 1788 | 131 | 9 | 59 | 172 | 18 | 0 | 4797 | | 845-945 | 51 | 1607 | 142 | 4 | 204 | 261 | 186 | 0 | 43 | 1729 | 140 | 9 | 55 | 153 | 27 | 0 | 4611 | | 900-1000 | 47 | 1534 | 144 | 2 | 157 | 227 | 183 | 0 | 48 | 1629 | 131 | 11 | 56 | 138 | 29 | 1 | 4337 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 3 | 3 | 6 | 2 | 14 | | 715-730 | 2 | 2 | 2 | 3 | 9 | | 730-745 | 0 | 0 | 5 | 0 | 5 | | 745-800 | 2 | 2 | 1 | 3 | 8 | | 800-815 | 6 | 6 | 12 | 1 |
25 | | 815-830 | 4 | 4 | 3 | 0 | 11 | | 830-845 | 9 | 9 | 8 | 9 | 35 | | 845-900 | 4 | 4 | 5 | 6 | 19 | | 900-915 | 8 | 8 | 14 | 3 | 33 | | 915-930 | 3 | 3 | 7 | 4 | 17 | | 930-945 | 7 | 7 | 6 | 3 | 23 | | 945-1000 | 3 | 3 | 6 | 1 | 13 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 7 | 7 | 14 | 8 | 36 | | 715-815 | 10 | 10 | 20 | 7 | 47 | | 730-830 | 12 | 12 | 21 | 4 | 49 | | 745-845 | 21 | 21 | 24 | 13 | 79 | | 800-900 | 23 | 23 | 28 | 16 | 90 | | 815-915 | 25 | 25 | 30 | 18 | 98 | | 830-930 | 24 | 24 | 34 | 22 | 104 | | 845-945 | 22 | 22 | 32 | 16 | 92 | | 900-1000 | 21 | 21 | 33 | 11 | 86 | | BICYCLE COU | NTS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 1 | C | 1 | 0 | 2 | | 715-730 | 1 | C | 0 | 1 | 2 | | 730-745 | 1 | 2 | 0 | 0 | ; | | 745-800 | 3 | C | 0 | 0 | ; | | 800-815 | 2 | C | 1 | 0 | ; | | 815-830 | 1 | C | 0 | 0 | | | 830-845 | 1 | 1 | 0 | 0 | | | 845-900 | 1 | 1 | 1 | 0 | , | | 900-915 | 0 | C | 0 | 0 | | | 915-930 | 1 | C | 1 | 1 | | | 930-945 | 1 | 1 | 2 | 2 | | | 945-1000 | 0 | C | 0 | 0 | | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 6 | 2 | 2 1 | 1 | 10 | | 715-815 | 7 | 2 | 1 | 1 | 1 | | 730-830 | 7 | 2 | 2 1 | 0 | 1 | | 745-845 | 7 | 1 | 1 | 0 | | | 800-900 | 5 | 2 | 2 | 0 | , | | 815-915 | 3 | 2 | 1 | 0 | | | 830-930 | 3 | 2 | 2 | 1 | | | 845-945 | 3 | 2 | 2 4 | 3 | 1: | | 900-1000 | 2 | 1 | 3 | 3 | | | APPROACH | SUMMAR | IES | | | | | | | |----------|--------|-------|------------|------|-------------|------|-------|-------| | | NORTH | APRCH | EAST APRCH | | SOUTH APRCH | | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 700-800 | 1660 | 2167 | 996 | 263 | 2115 | 1766 | 235 | 810 | | 715-815 | 1813 | 2072 | 1013 | 331 | 2086 | 1909 | 286 | 886 | | 730-830 | 1823 | 2076 | 996 | 358 | 2067 | 1918 | 309 | 843 | | 745-845 | 1869 | 2078 | 911 | 388 | 2044 | 1946 | 327 | 739 | | 800-900 | 1918 | 2091 | 842 | 385 | 2025 | 1997 | 314 | 626 | | 815-915 | 1871 | 2083 | 781 | 381 | 1997 | 1955 | 293 | 523 | | 830-930 | 1868 | 2040 | 707 | 357 | 1973 | 1928 | 249 | 472 | | 845-945 | 1804 | 1964 | 651 | 338 | 1921 | 1857 | 235 | 452 | | 900-1000 | 1727 | 1817 | 567 | 330 | 1819 | 1784 | 224 | 406 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W LINCOLN BOULEVARD | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 10 | 356 | 0 | 0 | 3 | 0 | 0 | 0 | 76 | 505 | 499 | 0 | 213 | 0 | 0 | 0 | 1662 | | 715-730 | 10 | 428 | 0 | 0 | 0 | 0 | 0 | 0 | 77 | 586 | 451 | 0 | 251 | 0 | 0 | 0 | 1803 | | 730-745 | 2 | 473 | 0 | 0 | 2 | 0 | 0 | 0 | 106 | 530 | 467 | 0 | 333 | 0 | 0 | 0 | 1913 | | 745-800 | 3 | 510 | 0 | 0 | 2 | 0 | 0 | 0 | 98 | 520 | 319 | 0 | 357 | 0 | 0 | 0 | 1809 | | 800-815 | 2 | 494 | 0 | 0 | 3 | 0 | 0 | 0 | 107 | 566 | 337 | 0 | 455 | 0 | 0 | 0 | 1964 | | 815-830 | 1 | 519 | 0 | 0 | 1 | 0 | 0 | 0 | 86 | 440 | 413 | 0 | 370 | 0 | 0 | 0 | 1830 | | 830-845 | 1 | 496 | 0 | 0 | 3 | 0 | 0 | 0 | 91 | 483 | 437 | 0 | 420 | 0 | 0 | 0 | 1931 | | 845-900 | 1 | 512 | 0 | 0 | 6 | 0 | 0 | 0 | 86 | 527 | 381 | 0 | 342 | 0 | 0 | 0 | 1855 | | 900-915 | 7 | 480 | 0 | 0 | 2 | 0 | 0 | 0 | 93 | 443 | 382 | 0 | 378 | 0 | 0 | 0 | 1785 | | 915-930 | 10 | 502 | 0 | 0 | 7 | 0 | 0 | 0 | 121 | 419 | 405 | 0 | 285 | 0 | 0 | 0 | 1749 | | 930-945 | 5 | 437 | 0 | 0 | 6 | 0 | 0 | 0 | 99 | 474 | 440 | 0 | 241 | 0 | 0 | 0 | 1702 | | 945-1000 | 8 | 399 | 0 | 0 | 10 | 0 | 0 | 0 | 93 | 458 | 428 | 0 | 242 | 0 | 0 | 0 | 1638 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 25 | 1767 | 0 | 0 | 7 | 0 | 0 | 0 | 357 | 2141 | 1736 | 0 | 1154 | 0 | 0 | 0 | 7187 | | 715-815 | 17 | 1905 | 0 | 0 | 7 | 0 | 0 | 0 | 388 | 2202 | 1574 | 0 | 1396 | 0 | 0 | 0 | 7489 | | 730-830 | 8 | 1996 | 0 | 0 | 8 | 0 | 0 | 0 | 397 | 2056 | 1536 | 0 | 1515 | 0 | 0 | 0 | 7516 | | 745-845 | 7 | 2019 | 0 | 0 | 9 | 0 | 0 | 0 | 382 | 2009 | 1506 | 0 | 1602 | 0 | 0 | 0 | 7534 | | 800-900 | 5 | 2021 | 0 | 0 | 13 | 0 | 0 | 0 | 370 | 2016 | 1568 | 0 | 1587 | 0 | 0 | 0 | 7580 | | 815-915 | 10 | 2007 | 0 | 0 | 12 | 0 | 0 | 0 | 356 | 1893 | 1613 | 0 | 1510 | 0 | 0 | 0 | 7401 | | 830-930 | 19 | 1990 | 0 | 0 | 18 | 0 | 0 | 0 | 391 | 1872 | 1605 | 0 | 1425 | 0 | 0 | 0 | 7320 | | 845-945 | 23 | 1931 | 0 | 0 | 21 | 0 | 0 | 0 | 399 | 1863 | 1608 | 0 | 1246 | 0 | 0 | 0 | 7091 | | 900-1000 | 30 | 1818 | 0 | 0 | 25 | 0 | 0 | 0 | 406 | 1794 | 1655 | 0 | 1146 | 0 | 0 | 0 | 6874 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 3 | 3 | | 715-730 | 0 | 0 | 3 | 0 | 3 | | 730-745 | 0 | 0 | 1 | 2 | 3 | | 745-800 | 0 | 0 | 1 | 0 | 1 | | 800-815 | 0 | 0 | 1 | 2 | 3 | | 815-830 | 0 | 0 | 2 | 1 | 3 | | 830-845 | 0 | 0 | 3 | 1 | 4 | | 845-900 | 0 | 0 | 8 | 3 | 11 | | 900-915 | 0 | 0 | 3 | 1 | 4 | | 915-930 | 0 | 0 | 9 | 1 | 10 | | 930-945 | 0 | 0 | 8 | 2 | 10 | | 945-1000 | 0 | 0 | 8 | 3 | 11 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 0 | 0 | 5 | 5 | 10 | | 715-815 | 0 | 0 | 6 | 4 | 10 | | 730-830 | 0 | 0 | 5 | 5 | 10 | | 745-845 | 0 | 0 | 7 | 4 | 11 | | 800-900 | 0 | 0 | 14 | 7 | 21 | | 815-915 | 0 | 0 | 16 | 6 | 22 | | 830-930 | 0 | 0 | 23 | 6 | 29 | | 845-945 | 0 | 0 | 28 | 7 | 35 | | 900-1000 | 0 | 0 | 28 | 7 | 35 | | BICYCLE COU | NTS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 0 | (| | 715-730 | 0 | 0 | 0 | 2 | 2 | | 730-745 | 0 | 0 | 0 | 0 | (| | 745-800 | 0 | 0 | 0 | 0 | (| | 800-815 | 0 | 0 | 0 | 0 | (| | 815-830 | 0 | 0 | 0 | 1 | | | 830-845 | 0 | 0 | 0 | 0 | (| | 845-900 | 0 | 0 | 0 | 0 | (| | 900-915 | 0 | 1 | 0 | 0 | | | 915-930 | 0 | 0 | 1 | 1 | 2 | | 930-945 | 0 | 0 | 0 | 0 | (| | 945-1000 | 0 | 0 | 0 | 0 | (| | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 0 | 0 | 0 | 2 | 2 | | 715-815 | 0 | 0 | 0 | 2 | 2 | | 730-830 | 0 | 0 | 0 | 1 | | | 745-845 | 0 | 0 | 0 | 1 | | | 800-900 | 0 | 0 | 0 | 1 | | | 815-915 | 0 | 1 | 0 | 1 | 2 | | 830-930 | 0 | 1 | 1 | 1 | 3 | | 845-945 | 0 | 1 | 1 | 1 | 3 | | 900-1000 | 0 | 1 | 1 | 1 | ; | | APPROACH | SUMMAR | IES | | | | | | | |----------|--------|-------|------------|------|-------|-------|-------|-------| | | NORTH | APRCH | EAST APRCH | | SOUTH | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 700-800 | 1792 | 2148 | 7 | 357 | 4234 | 2921 | 1154 | 1761 | | 715-815 | 1922 | 2209 | 7 | 388 | 4164 | 3301 | 1396 | 1591 | | 730-830 | 2004 | 2064 | 8 | 397 | 3989 | 3511 | 1515 | 1544 | | 745-845 | 2026 | 2018 | 9 | 382 | 3897 | 3621 | 1602 | 1513 | | 800-900 | 2026 | 2029 | 13 | 370 | 3954 | 3608 | 1587 | 1573 | | 815-915 | 2017 | 1905 | 12 | 356 | 3862 | 3517 | 1510 | 1623 | | 830-930 | 2009 | 1890 | 18 | 391 | 3868 | 3415 | 1425 | 1624 | | 845-945 | 1954 | 1884 | 21 | 399 | 3870 | 3177 | 1246 | 1631 | | 900-1000 | 1848 | 1819 | 25 | 406 | 3855 | 2964 | 1146 | 1685 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W 96TH STREET | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 31 | 356 | 0 | 0 | 143 | 0 | 0 | 0 | 63 | 954 | 0 | 0 | 7 | 0 | 0 | 0 | 1554 | | 715-730 | 44 | 438 | 0 | 0 | 115 | 0 | 0 | 0 | 92 | 955 | 0 | 0 | 5 | 0 | 0 | 0 | 1649 | | 730-745 | 35 | 547 | 0 | 0 | 113 | 0 | 0 | 0 | 93 | 900 | 0 | 0 | 8 | 0 | 0 | 0 | 1696 | | 745-800 | 46 | 634 | 0 | 0 | 125 | 0 | 0 | 0 | 77 | 909 | 0 | 0 | 10 | 0 | 0 | 0 | 1801 | | 800-815 | 32 | 608 | 0 | 0 | 108 | 0 | 0 | 0 | 68 | 862 | 0 | 0 | 5 | 0 | 0 | 0 | 1683 | | 815-830 | 31 | 618 | 0 | 0 | 111 | 0 | 0 | 0 | 63 | 923 | 0 | 0 | 12 | 0 | 0 | 0 | 1758 | | 830-845 | 31 | 602 | 0 | 0 | 95 | 0 | 0 | 0 | 72 | 894 | 0 | 0 | 7 | 0 | 0 | 0 | 1701 | | 845-900 | 40 | 547 | 0 | 0 | 93 | 0 | 0 | 0 | 85 | 861 | 0 | 0 | 17 | 0 | 0 | 0 | 1643 | | 900-915 | 35 | 510 | 0 | 0 | 116 | 0 | 0 | 0 | 90 | 848 | 0 | 0 | 15 | 0 | 0 | 0 | 1614 | | 915-930 | 46 | 394 | 0 | 0 | 138 | 0 | 0 | 0 | 84 | 834 | 0 | 0 | 14 | 0 | 0 | 0 | 1510 | | 930-945 | 32 | 364 | 0 | 0 | 138 | 0 | 0 | 0 | 84 | 844 | 0 | 0 | 17 | 0 | 0 | 0 | 1479 | | 945-1000 | 36 | 301 | 0 | 0 | 128 | 0 | 0 | 0 | 89 | 790 | 0 | 0 | 10 | 0 | 0 | 0 | 1354 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 156 | 1975 | 0 | 0 | 496 | 0 | 0 | 0 | 325 | 3718 | 0 | 0 | 30 |
0 | 0 | 0 | 6700 | | 715-815 | 157 | 2227 | 0 | 0 | 461 | 0 | 0 | 0 | 330 | 3626 | 0 | 0 | 28 | 0 | 0 | 0 | 6829 | | 730-830 | 144 | 2407 | 0 | 0 | 457 | 0 | 0 | 0 | 301 | 3594 | 0 | 0 | 35 | 0 | 0 | 0 | 6938 | | 745-845 | 140 | 2462 | 0 | 0 | 439 | 0 | 0 | 0 | 280 | 3588 | 0 | 0 | 34 | 0 | 0 | 0 | 6943 | | 800-900 | 134 | 2375 | 0 | 0 | 407 | 0 | 0 | 0 | 288 | 3540 | 0 | 0 | 41 | 0 | 0 | 0 | 6785 | | 815-915 | 137 | 2277 | 0 | 0 | 415 | 0 | 0 | 0 | 310 | 3526 | 0 | 0 | 51 | 0 | 0 | 0 | 6716 | | 830-930 | 152 | 2053 | 0 | 0 | 442 | 0 | 0 | 0 | 331 | 3437 | 0 | 0 | 53 | 0 | 0 | 0 | 6468 | | 845-945 | 153 | 1815 | 0 | 0 | 485 | 0 | 0 | 0 | 343 | 3387 | 0 | 0 | 63 | 0 | 0 | 0 | 6246 | | 900-1000 | 149 | 1569 | 0 | 0 | 520 | 0 | 0 | 0 | 347 | 3316 | 0 | 0 | 56 | 0 | 0 | 0 | 5957 | | PEDESTRIAN COUNTS | | | | | | | | | | | | | |-------------------|-------|------|-------|------|-------|--|--|--|--|--|--|--| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | | | | | | | | PERIOD | LEG | LEG | LEG | LEG | | | | | | | | | | 700-715 | 0 | 0 | 6 | 0 | 6 | | | | | | | | | 715-730 | 0 | 0 | 3 | 0 | 3 | | | | | | | | | 730-745 | 0 | 0 | 1 | 0 | 1 | | | | | | | | | 745-800 | 0 | 0 | 3 | 0 | 3 | | | | | | | | | 800-815 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 815-830 | 0 | 0 | 4 | 0 | 4 | | | | | | | | | 830-845 | 0 | 0 | 7 | 0 | 7 | | | | | | | | | 845-900 | 0 | 0 | 1 | 0 | 1 | | | | | | | | | 900-915 | 0 | 0 | 3 | 0 | 3 | | | | | | | | | 915-930 | 0 | 0 | 6 | 0 | 6 | | | | | | | | | 930-945 | 0 | 0 | 3 | 0 | 3 | | | | | | | | | 945-1000 | 0 | 0 | 1 | 0 | 1 | | | | | | | | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | | | | | | | | PERIOD | LEG | LEG | LEG | LEG | | | | | | | | | | 700-800 | 0 | 0 | 13 | 0 | 13 | | | | | | | | | 715-815 | 0 | 0 | 7 | 0 | 7 | | | | | | | | | 730-830 | 0 | 0 | 8 | 0 | 8 | | | | | | | | | 745-845 | 0 | 0 | 14 | 0 | 14 | | | | | | | | | 800-900 | 0 | 0 | 12 | 0 | 12 | | | | | | | | | 815-915 | 0 | 0 | 15 | 0 | 15 | | | | | | | | | 830-930 | 0 | 0 | 17 | 0 | 17 | | | | | | | | | 845-945 | 0 | 0 | 13 | 0 | 13 | | | | | | | | | 900-1000 | 0 | 0 | 13 | 0 | 13 | | | | | | | | | BICYCLE COUNTS | | | | | | | | | | | | | |----------------|-------|------|-------|------|-------|--|--|--|--|--|--|--| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | | | | | | | | PERIOD | LEG | LEG | LEG | LEG | | | | | | | | | | 700-715 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 715-730 | 0 | 1 | 0 | 1 | 2 | | | | | | | | | 730-745 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 745-800 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 800-815 | 0 | 0 | 0 | 2 | 2 | | | | | | | | | 815-830 | 0 | 0 | 0 | 1 | 1 | | | | | | | | | 830-845 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 845-900 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | 900-915 | 0 | 0 | 0 | 1 | 1 | | | | | | | | | 915-930 | 0 | 0 | 0 | 1 | 1 | | | | | | | | | 930-945 | 0 | 1 | 0 | 0 | 1 | | | | | | | | | 945-1000 | 0 | 0 | 0 | 0 | C | | | | | | | | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | | | | | | | | PERIOD | LEG | LEG | LEG | LEG | | | | | | | | | | 700-800 | 0 | 1 | 0 | 1 | 2 | | | | | | | | | 715-815 | 0 | 1 | 0 | 3 | 4 | | | | | | | | | 730-830 | 0 | 0 | 0 | 3 | 3 | | | | | | | | | 745-845 | 0 | 0 | 0 | 3 | 3 | | | | | | | | | 800-900 | 0 | 0 | 0 | 3 | 3 | | | | | | | | | 815-915 | 0 | 0 | 0 | 2 | 2 | | | | | | | | | 830-930 | 0 | 0 | 0 | 2 | 2 | | | | | | | | | 845-945 | 0 | 1 | 0 | 2 | 3 | | | | | | | | | 900-1000 | 0 | 1 | 0 | 2 | 3 | | | | | | | | | APPROACH | APPROACH SUMMARIES | | | | | | | | | | | | | | |----------|--------------------|-------------|--|------------|------|--|-------------|------|--|------------|------|--|--|--| | | NORTH | NORTH APRCH | | EAST APRCH | | | SOUTH APRCH | | | WEST APRCH | | | | | | | APRCH | EXIT | | | | | 700-800 | 2131 | 4214 | | 496 | 325 | | 4043 | 2005 | | 30 | 156 | | | | | 715-815 | 2384 | 4087 | | 461 | 330 | | 3956 | 2255 | | 28 | 157 | | | | | 730-830 | 2551 | 4051 | | 457 | 301 | | 3895 | 2442 | | 35 | 144 | | | | | 745-845 | 2602 | 4027 | | 439 | 280 | | 3868 | 2496 | | 34 | 140 | | | | | 800-900 | 2509 | 3947 | | 407 | 288 | | 3828 | 2416 | | 41 | 134 | | | | | 815-915 | 2414 | 3941 | | 415 | 310 | | 3836 | 2328 | | 51 | 137 | | | | | 830-930 | 2205 | 3879 | | 442 | 331 | | 3768 | 2106 | | 53 | 152 | | | | | 845-945 | 1968 | 3872 | | 485 | 343 | | 3730 | 1878 | | 63 | 153 | | | | | 900-1000 | 1718 | 3836 | | 520 | 347 | | 3663 | 1625 | | 56 | 149 | | | | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W CENTURY BOULEVARD | VEHICLE COUNTS | | | | | | | | | | | | | | | | | | |----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 20 | 261 | 0 | 0 | 130 | 29 | 96 | 0 | 11 | 868 | 0 | 0 | 0 | 0 | 0 | 0 | 1415 | | 715-730 | 21 | 378 | 0 | 0 | 127 | 36 | 94 | 0 | 15 | 836 | 0 | 0 | 0 | 0 | 0 | 0 | 1507 | | 730-745 | 19 | 454 | 0 | 0 | 138 | 65 | 94 | 0 | 9 | 844 | 0 | 0 | 0 | 0 | 0 | 0 | 1623 | | 745-800 | 25 | 552 | 0 | 0 | 127 | 45 | 80 | 0 | 19 | 843 | 0 | 0 | 0 | 0 | 0 | 0 | 1691 | | 800-815 | 18 | 582 | 0 | 0 | 138 | 26 | 83 | 0 | 13 | 782 | 0 | 0 | 0 | 0 | 0 | 0 | 1642 | | 815-830 | 19 | 582 | 0 | 0 | 141 | 75 | 108 | 0 | 18 | 822 | 0 | 0 | 0 | 0 | 0 | 0 | 1765 | | 830-845 | 24 | 575 | 0 | 0 | 124 | 64 | 98 | 0 | 11 | 806 | 0 | 0 | 0 | 0 | 0 | 0 | 1702 | | 845-900 | 30 | 554 | 0 | 0 | 142 | 57 | 86 | 0 | 19 | 768 | 0 | 0 | 0 | 0 | 0 | 0 | 1656 | | 900-915 | 31 | 483 | 0 | 0 | 135 | 57 | 97 | 0 | 11 | 771 | 0 | 0 | 0 | 0 | 0 | 0 | 1585 | | 915-930 | 32 | 407 | 0 | 0 | 154 | 60 | 87 | 0 | 13 | 771 | 0 | 0 | 0 | 0 | 0 | 0 | 1524 | | 930-945 | 28 | 313 | 0 | 0 | 127 | 49 | 98 | 0 | 9 | 819 | 0 | 0 | 0 | 0 | 0 | 0 | 1443 | | 945-1000 | 23 | 311 | 0 | 0 | 113 | 53 | 83 | 0 | 15 | 740 | 0 | 0 | 0 | 0 | 0 | 0 | 1338 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 85 | 1645 | 0 | 0 | 522 | 175 | 364 | 0 | 54 | 3391 | 0 | 0 | 0 | 0 | 0 | 0 | 6236 | | 715-815 | 83 | 1966 | 0 | 0 | 530 | 172 | 351 | 0 | 56 | 3305 | 0 | 0 | 0 | 0 | 0 | 0 | 6463 | | 730-830 | 81 | 2170 | 0 | 0 | 544 | 211 | 365 | 0 | 59 | 3291 | 0 | 0 | 0 | 0 | 0 | 0 | 6721 | | 745-845 | 86 | 2291 | 0 | 0 | 530 | 210 | 369 | 0 | 61 | 3253 | 0 | 0 | 0 | 0 | 0 | 0 | 6800 | | 800-900 | 91 | 2293 | 0 | 0 | 545 | 222 | 375 | 0 | 61 | 3178 | 0 | 0 | 0 | 0 | 0 | 0 | 6765 | | 815-915 | 104 | 2194 | 0 | 0 | 542 | 253 | 389 | 0 | 59 | 3167 | 0 | 0 | 0 | 0 | 0 | 0 | 6708 | | 830-930 | 117 | 2019 | 0 | 0 | 555 | 238 | 368 | 0 | 54 | 3116 | 0 | 0 | 0 | 0 | 0 | 0 | 6467 | | 845-945 | 121 | 1757 | 0 | 0 | 558 | 223 | 368 | 0 | 52 | 3129 | 0 | 0 | 0 | 0 | 0 | 0 | 6208 | | 900-1000 | 114 | 1514 | 0 | 0 | 529 | 219 | 365 | 0 | 48 | 3101 | 0 | 0 | 0 | 0 | 0 | 0 | 5890 | | PEDESTRIAN COUNTS | | | | | | | | | | | | | |-------------------|-------|------|-------|------|-------|--|--|--|--|--|--|--| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | | | | | | | | PERIOD | LEG | LEG | LEG | LEG | | | | | | | | | | 700-715 | 16 | 16 | 0 | 0 | 32 | | | | | | | | | 715-730 | 22 | 22 | 0 | 0 | 44 | | | | | | | | | 730-745 | 15 | 15 | 0 | 0 | 30 | | | | | | | | | 745-800 | 18 | 18 | 0 | 0 | 36 | | | | | | | | | 800-815 | 15 | 15 | 0 | 0 | 30 | | | | | | | | | 815-830 | 20 | 20 | 0 | 0 | 40 | | | | | | | | | 830-845 | 25 | 25 | 0 | 0 | 50 | | | | | | | | | 845-900 | 9 | 9 | 0 | 0 | 18 | | | | | | | | | 900-915 | 19 | 19 | 0 | 0 | 38 | | | | | | | | | 915-930 | 18 | 18 | 0 | 0 | 36 | | | | | | | | | 930-945 | 21 | 21 | 1 | 0 | 43 | | | | | | | | | 945-1000 | 20 | 20 | 0 | 0 | 40 | | | | | | | | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | | | | | | | | PERIOD | LEG | LEG | LEG | LEG | | | | | | | | | | 700-800 | 71 | 71 | 0 | 0 | 142 | | | | | | | | | 715-815 | 70 | 70 | 0 | 0 | 140 | | | | | | | | | 730-830 | 68 | 68 | 0 | 0 | 136 | | | | | | | | | 745-845 | 78 | 78 | 0 | 0 | 156 | | | | | | | | | 800-900 | 69 | 69 | 0 | 0 | 138 | | | | | | | | | 815-915 | 73 | 73 | 0 | 0 | 146 | | | | | | | | | 830-930 | 71 | 71 | 0 | 0 | 142 | | | | | | | | | 845-945 | 67 | 67 | 1 | 0 | 135 | | | | | | | | | 900-1000 | 78 | 78 | 1 | 0 | 157 | | | | | | | | | BICYCLE COU | NTS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 2 | 0 | 0 | 1 | ; | | 715-730 | 1 | 0 | 0 | 0 | | | 730-745 | 0 | 0 | 0 | 1 | | | 745-800 | 2 | 0 | 0 | 0 | | | 800-815 | 1 | 0 | 0 | 0 | | | 815-830 | 0 | 0 | 0 | 1 | | | 830-845 | 1 | 0 | 0 | 1 | | | 845-900 | 0 | 0 | 0 | 0 | | | 900-915 | 0 | 0 | 0 | 0 | | | 915-930 | 0 | 0 | 0 | 0 | | | 930-945 | 0 | 0 | 0 | 1 | | | 945-1000 | 0 | 0 | 0 | 0 | | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 5 | 0 | 0 | 2 | | | 715-815 | 4 | 0 | 0 | 1 | | | 730-830 | 3 | 0 | 0 | 2 | | | 745-845 | 4 | 0 | 0 | 2 | | | 800-900 | 2 | 0 | 0 | 2 | | | 815-915 | 1 | 0 | 0 | 2 | ; | | 830-930 | 1 | 0 | 0 | 1 | : | | 845-945 | 0 | 0 | 0 | 1 | | | 900-1000 | 0 | 0 | 0 | 1 | | | APPROACH | APPROACH SUMMARIES | | | | | | | | | | | | | | |----------|--------------------|-------------|--|------------|------|--|-------------|------|--|-------|-------|--|--|--| | | | NORTH APRCH | | EAST APRCH | | | SOUTH APRCH | | | WEST | APRCH | | | | | | APRCH | EXIT | | | | | 700-800 | 1730 | 3913 | | 1061 | 54 | | 3445 | 2009 | | 0 | 260 | | | | | 715-815 | 2049 | 3835 | | 1053 | 56 | | 3361 | 2317 | | 0 |
255 | | | | | 730-830 | 2251 | 3835 | | 1120 | 59 | | 3350 | 2535 | | 0 | 292 | | | | | 745-845 | 2377 | 3783 | | 1109 | 61 | | 3314 | 2660 | | 0 | 296 | | | | | 800-900 | 2384 | 3723 | | 1142 | 61 | | 3239 | 2668 | | 0 | 313 | | | | | 815-915 | 2298 | 3709 | | 1184 | 59 | | 3226 | 2583 | | 0 | 357 | | | | | 830-930 | 2136 | 3671 | | 1161 | 54 | | 3170 | 2387 | | 0 | 355 | | | | | 845-945 | 1878 | 3687 | | 1149 | 52 | | 3181 | 2125 | | 0 | 344 | | | | | 900-1000 | 1628 | 3630 | | 1113 | 48 | | 3149 | 1879 | | 0 | 333 | | | | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: THURSDAY MARCH 7, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W WB I-105 RAMPS | VEHICLE COLL | NTO | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | VEHICLE COU | NIS | - | | - | | | | - | 1 | | | | | | 1 | | | | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | | 8 | _ | | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 0 | 0 | 0 | 0 | 479 | 0 | 0 | 0 | 0 | 502 | 0 | 0 | 0 | 0 | 0 | 0 | 981 | | 715-730 | 0 | 0 | 0 | 0 | 613 | 0 | 0 | 0 | 0 | 559 | 0 | 0 | 0 | 0 | 0 | 0 | 1172 | | 730-745 | 0 | 0 | 0 | 0 | 639 | 0 | 0 | 0 | 0 | 602 | 0 | 0 | 0 | 0 | 0 | 0 | 1241 | | 745-800 | 0 | 0 | 0 | 0 | 633 | 0 | 0 | 0 | 0 | 508 | 0 | 0 | 0 | 0 | 0 | 0 | 1141 | | 800-815 | 0 | 0 | 0 | 0 | 646 | 0 | 0 | 0 | 0 | 508 | 0 | 0 | 0 | 0 | 0 | 0 | 1154 | | 815-830 | 0 | 0 | 0 | 0 | 598 | 0 | 0 | 0 | 0 | 548 | 0 | 0 | 0 | 0 | 0 | 0 | 1146 | | 830-845 | 0 | 0 | 0 | 0 | 657 | 0 | 0 | 0 | 0 | 469 | 0 | 0 | 0 | 0 | 0 | 0 | 1126 | | 845-900 | 0 | 0 | 0 | 0 | 651 | 0 | 0 | 0 | 0 | 460 | 0 | 0 | 0 | 0 | 0 | 0 | 1111 | | 900-915 | 0 | 0 | 0 | 0 | 555 | 0 | 0 | 0 | 0 | 532 | 0 | 0 | 0 | 0 | 0 | 0 | 1087 | | 915-930 | 0 | 0 | 0 | 0 | 653 | 0 | 0 | 0 | 0 | 467 | 0 | 0 | 0 | 0 | 0 | 0 | 1120 | | 930-945 | 0 | 0 | 0 | 0 | 576 | 0 | 0 | 0 | 0 | 477 | 0 | 0 | 0 | 0 | 0 | 0 | 1053 | | 945-1000 | 0 | 0 | 0 | 0 | 653 | 0 | 0 | 0 | 0 | 342 | 0 | 0 | 0 | 0 | 0 | 0 | 995 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 0 | 0 | 0 | 0 | 2364 | 0 | 0 | 0 | 0 | 2171 | 0 | 0 | 0 | 0 | 0 | 0 | 4535 | | 715-815 | 0 | 0 | 0 | 0 | 2531 | 0 | 0 | 0 | 0 | 2177 | 0 | 0 | 0 | 0 | 0 | 0 | 4708 | | 730-830 | 0 | 0 | 0 | 0 | 2516 | 0 | 0 | 0 | 0 | 2166 | 0 | 0 | 0 | 0 | 0 | 0 | 4682 | | 745-845 | 0 | 0 | 0 | 0 | 2534 | 0 | 0 | 0 | 0 | 2033 | 0 | 0 | 0 | 0 | 0 | 0 | 4567 | | 800-900 | 0 | 0 | 0 | 0 | 2552 | 0 | 0 | 0 | 0 | 1985 | 0 | 0 | 0 | 0 | 0 | 0 | 4537 | | 815-915 | 0 | 0 | 0 | 0 | 2461 | 0 | 0 | 0 | 0 | 2009 | 0 | 0 | 0 | 0 | 0 | 0 | 4470 | | 830-930 | 0 | 0 | 0 | 0 | 2516 | 0 | 0 | 0 | 0 | 1928 | 0 | 0 | 0 | 0 | 0 | 0 | 4444 | | 845-945 | 0 | 0 | 0 | 0 | 2435 | 0 | 0 | 0 | 0 | 1936 | 0 | 0 | 0 | 0 | 0 | 0 | 4371 | | 900-1000 | 0 | 0 | 0 | 0 | 2437 | 0 | 0 | 0 | 0 | 1818 | 0 | 0 | 0 | 0 | 0 | 0 | 4255 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 0 | 0 | | 715-730 | 0 | 0 | 0 | 0 | 0 | | 730-745 | 0 | 0 | 0 | 0 | 0 | | 745-800 | 0 | 0 | 0 | 0 | 0 | | 800-815 | 0 | 0 | 0 | 0 | 0 | | 815-830 | 0 | 0 | 0 | 0 | 0 | | 830-845 | 0 | 0 | 0 | 0 | 0 | | 845-900 | 0 | 0 | 0 | 0 | 0 | | 900-915 | 0 | 0 | 0 | 0 | 0 | | 915-930 | 0 | 0 | 0 | 0 | 0 | | 930-945 | 0 | 0 | 0 | 0 | 0 | | 945-1000 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 0 | 0 | 0 | 0 | 0 | | 715-815 | 0 | 0 | 0 | 0 | 0 | | 730-830 | 0 | 0 | 0 | 0 | 0 | | 745-845 | 0 | 0 | 0 | 0 | 0 | | 800-900 | 0 | 0 | 0 | 0 | 0 | | 815-915 | 0 | 0 | 0 | 0 | 0 | | 830-930 | 0 | 0 | 0 | 0 | 0 | | 845-945 | 0 | 0 | 0 | 0 | 0 | | 900-1000 | 0 | 0 | 0 | 0 | 0 | | BICYCLE COUN | TS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 0 | 0 | | 715-730 | 0 | 0 | 0 | 0 | 0 | | 730-745 | 0 | 0 | 0 | 0 | 0 | | 745-800 | 0 | 0 | 0 | 0 | 0 | | 800-815 | 0 | 0 | 0 | 0 | 0 | | 815-830 | 0 | 0 | 0 | 0 | 0 | | 830-845 | 0 | 0 | 0 | 0 | 0 | | 845-900 | 0 | 0 | 0 | 0 | 0 | | 900-915 | 0 | 0 | 0 | 0 | 0 | | 915-930 | 0 | 0 | 0 | 0 | 0 | | 930-945 | 0 | 0 | 0 | 0 | 0 | | 945-1000 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 0 | 0 | 0 | 0 | 0 | | 715-815 | 0 | 0 | 0 | 0 | 0 | | 730-830 | 0 | 0 | 0 | 0 | 0 | | 745-845 | 0 | 0 | 0 | 0 | 0 | | 800-900 | 0 | 0 | 0 | 0 | 0 | | 815-915 | 0 | 0 | 0 | 0 | 0 | | 830-930 | 0 | 0 | 0 | 0 | 0 | | 845-945 | 0 | 0 | 0 | 0 | 0 | | 900-1000 | 0 | 0 | 0 | 0 | 0 | | APPROACH | SUMMAR | IES | | | | | | | | |----------|--------|-------|------------|------|-------------|-------|-------|-------|-------| | | NORTH | APRCH | EAST APRCH | | SOUTH APRCH | | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | | APRCH | EXIT | APRCH | EXIT | | 700-800 | 0 | 4535 | 2364 | 0 | | 2171 | 0 | 0 | 0 | | 715-815 | 0 | 4708 | 2531 | 0 | | 2177 | 0 | 0 | 0 | | 730-830 | 0 | 4682 | 2516 | 0 | | 2166 | 0 | 0 | 0 | | 745-845 | 0 | 4567 | 2534 | 0 | | 2033 | 0 | 0 | 0 | | 800-900 | 0 | 4537 | 2552 | 0 | | 1985 | 0 | 0 | 0 | | 815-915 | 0 | 4470 | 2461 | 0 | | 2009 | 0 | 0 | 0 | | 830-930 | 0 | 4444 | 2516 | 0 | | 1928 | 0 | 0 | 0 | | 845-945 | 0 | 4371 | 2435 | 0 | | 1936 | 0 | 0 | 0 | | 900-1000 | 0 | 4255 | 2437 | 0 | | 1818 | 0 | 0 | 0 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY MARCH 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W IMPERIAL HIGHWAY | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 1 | 347 | 59 | 0 | 95 | 55 | 42 | 5 | 119 | 448 | 24 | 0 | 21 | 55 | 30 | 0 | 1301 | | 715-730 | 2 | 444 | 66 | 1 | 109 | 73 | 64 | 2 | 110 | 421 | 16 | 0 | 21 | 71 | 27 | 0 | 1427 | | 730-745 | 4 | 458 | 76 | 0 | 134 | 61 | 69 | 2 | 104 | 340 | 23 | 0 | 30 | 71 | 45 | 0 | 1417 | | 745-800 | 3 | 581 | 125 | 1 | 78 | 66 | 56 | 1 | 115 | 419 | 20 | 0 | 38 | 70 | 56 | 0 | 1629 | | 800-815 | 4 | 617 | 144 | 0 | 91 | 65 | 60 | 5 | 111 | 370 | 27 | 1 | 32 | 75 | 36 | 0 | 1638 | | 815-830 | 5 | 579 | 112 | 0 | 87 | 53 | 49 | 3 | 120 | 354 | 21 | 0 | 31 | 75 | 41 | 0 | 1530 | | 830-845 | 2 | 672 | 109 | 3 | 85 | 57 | 38 | 7 | 106 | 396 | 19 | 1 | 35 | 63 | 28 | 0 | 1621 | | 845-900 | 0 | 641 | 110 | 1 | 75 | 63 | 50 | 3 | 127 | 342 | 23 | 1 | 31 | 68 | 33 | 0 | 1568 | | 900-915 | 1 | 544 | 79 | 1 | 86 | 46 | 61 | 2 | 112 | 353 | 17 | 0 | 32 | 56 | 43 | 0 | 1433 | | 915-930 | 5 | 494 | 80 | 4 | 88 | 44 | 35 | 1 | 106 | 375 | 23 | 0 | 31 | 60 | 27 | 0 | 1373 | | 930-945 | 3 | 324 | 56 | 2 | 96 | 53 | 39 | 2 | 132 | 349 | 23 | 2 | 18 | 78 | 35 | 1 | 1213 | | 945-1000 | 5 | 408 | 62 | 1 | 73 | 50 | 30 | 0 | 115 | 295 | 17 | 1 | 27 | 60 | 24 | 2 | 1170 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 10 | 1830 | 326 | 2 | 416 | 255 | 231 | 10 | 448 | 1628 | 83 | 0 | 110 | 267 | 158 | 0 | 5774 | | 715-815 | 13 | 2100 | 411 | 2 | 412 | 265 | 249 | 10 | 440 | 1550 | 86 | 1 | 121 | 287 | 164 | 0 | 6111 | | 730-830 | 16 | 2235 | 457 | 1 | 390 | 245 | 234 | 11 | 450 | 1483 | 91 | 1 | 131 | 291 | 178 | 0 | 6214 | | 745-845 | 14 | 2449 | 490 | 4 | 341 | 241 | 203 | 16 | 452 | 1539 | 87 | 2 | 136 | 283 | 161 | 0 | 6418 | | 800-900 | 11 | 2509 | 475 | 4 | 338 | 238 | 197 | 18 | 464 | 1462 | 90 | 3 | 129 | 281 | 138 | 0 | 6357 | | 815-915 | 8 | 2436 | 410 | 5 | 333 | 219 | 198 | 15 | 465 | 1445 | 80 | 2 | 129 | 262 | 145 | 0 | 6152 | | 830-930 | 8 | 2351 | 378 | 9 | 334 | 210 | 184 | 13 | 451 | 1466 | 82 | 2 | 129 | 247 | 131 | 0 | 5995 | | 845-945 | 9 | 2003 | 325 | 8 | 345 | 206 | 185 | 8 | 477 | 1419 | 86 | 3 | 112 | 262 | 138 | 1 | 5587 | | 900-1000 | 14 | 1770 | 277 | 8 | 343 | 193 | 165 | 5 | 465 | 1372 | 80 | 3 | 108 | 254 | 129 | 3 | 5189 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 2 | 2 | | 715-730 | 0 | 0 | 0 | 0 | 0 | | 730-745 | 0 | 0 | 1 | 2 | 3 | | 745-800 | 0 | 0 | 0 | 5 | 5 | | 800-815 | 0 | 0 | 0 | 5 | 5 | | 815-830 | 0 | 0 | 1 | 4 | 5 | | 830-845 | 0 | 0 | 1 | 4 | 5 | | 845-900 | 0 | 0 | 1 | 2 | 3 | | 900-915 | 0 | 0 | 0 | 1 | 1 | | 915-930 | 1 | 1 | 1 | 4 | 7 | | 930-945 | 0 | 0 | 1 | 5 | 6 | | 945-1000 | 0 | 0 | 0 | 3 | 3 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 0 | 0 | 1 | 9 | 10 | | 715-815 | 0 | 0 | 1 | 12 | 13 | | 730-830 | 0 | 0 | 2 | 16 | 18 | | 745-845 | 0 | 0 | 2 | 18 | 20 | | 800-900 | 0 | 0 | 3 | 15 | 18 | | 815-915 | 0 | 0 | 3 | 11 | 14 | | 830-930 | 1 | 1 | 3 | 11 | 16 | | 845-945 | 1 | 1 | 3 | 12 | 17 | | 900-1000 | 1 | 1 | 2 | 13 | 17 | | BICYCLE COU | NTS | | | | | |--------------------|-------|------|-------|------|-------| | 15 MIN COUNTS |
NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 1 | 0 | 1 | | 715-730 | 0 | 0 | 3 | 0 | (3) | | 730-745 | 0 | 0 | 1 | 0 | , | | 745-800 | 1 | 1 | 4 | 0 | 6 | | 800-815 | 0 | 0 | 1 | 0 | | | 815-830 | 1 | 0 | 2 | 0 | 3 | | 830-845 | 0 | 0 | 5 | 0 | ţ | | 845-900 | 1 | 0 | 1 | 0 | 2 | | 900-915 | 0 | 0 | 0 | 0 | (| | 915-930 | 0 | 0 | 0 | 0 | (| | 930-945 | 0 | 0 | 1 | 0 | , | | 945-1000 | 0 | 0 | 2 | 1 | 3 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 1 | 1 | 9 | 0 | 11 | | 715-815 | 1 | 1 | 9 | 0 | 11 | | 730-830 | 2 | 1 | 8 | 0 | 11 | | 745-845 | 2 | 1 | 12 | 0 | 15 | | 800-900 | 2 | 0 | 9 | 0 | 11 | | 815-915 | 2 | 0 | 8 | 0 | 10 | | 830-930 | 1 | 0 | 6 | 0 | 7 | | 845-945 | 1 | 0 | 2 | 0 | ; | | 900-1000 | 0 | 0 | 3 | 1 | 4 | | APPROACH | SUMMAR | IES | | | | | | | |----------|--------|-------|--------|-------|-------|-------|-------|-------| | | NORTH | APRCH | EAST / | APRCH | SOUTH | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 700-800 | 2168 | 2204 | 912 | 1051 | 2159 | 2171 | 535 | 348 | | 715-815 | 2526 | 2128 | 936 | 1148 | 2077 | 2471 | 572 | 364 | | 730-830 | 2709 | 2052 | 880 | 1209 | 2025 | 2601 | 600 | 352 | | 745-845 | 2957 | 2045 | 801 | 1241 | 2080 | 2790 | 580 | 342 | | 800-900 | 2999 | 1942 | 791 | 1238 | 2019 | 2838 | 548 | 339 | | 815-915 | 2859 | 1928 | 765 | 1152 | 1992 | 2765 | 536 | 307 | | 830-930 | 2746 | 1940 | 741 | 1089 | 2001 | 2666 | 507 | 300 | | 845-945 | 2345 | 1910 | 744 | 1072 | 1985 | 2303 | 513 | 302 | | 900-1000 | 2069 | 1852 | 706 | 1001 | 1920 | 2046 | 494 | 290 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: WEDNESDAY FEBRUARY 27, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S JENNY AVENUE E/W WESTCHESTER PARKWAY | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | - | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 11 | 0 | 2 | 0 | 25 | 262 | 0 | 0 | 3 | 1 | 0 | 0 | 1 | 56 | 16 | 0 | 377 | | 715-730 | 8 | 0 | 4 | 0 | 31 | 317 | 3 | 0 | 6 | 0 | 1 | 0 | 4 | 62 | 18 | 0 | 454 | | 730-745 | 12 | 0 | 3 | 0 | 16 | 284 | 1 | 0 | 5 | 0 | 3 | 0 | 0 | 69 | 22 | 0 | 415 | | 745-800 | 13 | 0 | 4 | 0 | 21 | 349 | 0 | 0 | 8 | 0 | 2 | 0 | 2 | 99 | 18 | 0 | 516 | | 800-815 | 8 | 0 | 3 | 0 | 26 | 300 | 3 | 0 | 6 | 0 | 2 | 0 | 1 | 90 | 12 | 1 | 452 | | 815-830 | 10 | 0 | 6 | 0 | 36 | 240 | 0 | 0 | 6 | 0 | 4 | 0 | 4 | 104 | 12 | 0 | 422 | | 830-845 | 7 | 0 | 3 | 0 | 17 | 246 | 0 | 0 | 3 | 0 | 4 | 0 | 3 | 91 | 9 | 0 | 383 | | 845-900 | 7 | 1 | 5 | 0 | 15 | 235 | 1 | 1 | 14 | 1 | 4 | 0 | 3 | 81 | 7 | 1 | 376 | | 900-915 | 12 | 0 | 5 | 0 | 22 | 195 | 2 | 0 | 19 | 0 | 5 | 0 | 2 | 88 | 13 | 0 | 363 | | 915-930 | 11 | 0 | 11 | 0 | 24 | 159 | 2 | 0 | 14 | 0 | 6 | 0 | 0 | 87 | 12 | 0 | 326 | | 930-945 | 10 | 0 | 7 | 0 | 28 | 153 | 0 | 0 | 8 | 0 | 10 | 0 | 2 | 83 | 11 | 0 | 312 | | 945-1000 | 19 | 0 | 8 | 0 | 17 | 166 | 0 | 0 | 11 | 0 | 7 | 0 | 5 | 75 | 14 | 0 | 322 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 44 | 0 | 13 | 0 | 93 | 1212 | 4 | 0 | 22 | 1 | 6 | 0 | 7 | 286 | 74 | 0 | 1762 | | 715-815 | 41 | 0 | 14 | 0 | 94 | 1250 | 7 | 0 | 25 | 0 | 8 | 0 | 7 | 320 | 70 | 1 | 1837 | | 730-830 | 43 | 0 | 16 | 0 | 99 | 1173 | 4 | 0 | 25 | 0 | 11 | 0 | 7 | 362 | 64 | 1 | 1805 | | 745-845 | 38 | 0 | 16 | 0 | 100 | 1135 | 3 | 0 | 23 | 0 | 12 | 0 | 10 | 384 | 51 | 1 | 1773 | | 800-900 | 32 | 1 | 17 | 0 | 94 | 1021 | 4 | 1 | 29 | 1 | 14 | 0 | 11 | 366 | 40 | 2 | 1633 | | 815-915 | 36 | 1 | 19 | 0 | 90 | 916 | 3 | 1 | 42 | 1 | 17 | 0 | 12 | 364 | 41 | 1 | 1544 | | 830-930 | 37 | 1 | 24 | 0 | 78 | 835 | 5 | 1 | 50 | 1 | 19 | 0 | 8 | 347 | 41 | 1 | 1448 | | 845-945 | 40 | 1 | 28 | 0 | 89 | 742 | 5 | 1 | 55 | 1 | 25 | 0 | 7 | 339 | 43 | 1 | 1377 | | 900-1000 | 52 | 0 | 31 | 0 | 91 | 673 | 4 | 0 | 52 | 0 | 28 | 0 | 9 | 333 | 50 | 0 | 1323 | | PEDESTRIAN | COUNTS | 3 | | | | |---------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 6 | 6 | 1 | 0 | 13 | | 715-730 | 3 | 3 | 0 | 1 | 7 | | 730-745 | 4 | 4 | 1 | 0 | 9 | | 745-800 | 1 | 1 | 0 | 1 | 3 | | 800-815 | 2 | 2 | 0 | 1 | 5 | | 815-830 | 2 | 2 | 0 | 0 | 4 | | 830-845 | 0 | 0 | 3 | 1 | 4 | | 845-900 | 2 | 2 | 0 | 0 | 4 | | 900-915 | 1 | 1 | 2 | 1 | 5 | | 915-930 | 3 | 3 | 1 | 2 | 9 | | 930-945 | 2 | 2 | 0 | 1 | 5 | | 945-1000 | 6 | 6 | 0 | 0 | 12 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 14 | 14 | 2 | 2 | 32 | | 715-815 | 10 | 10 | 1 | 3 | 24 | | 730-830 | 9 | 9 | 1 | 2 | 21 | | 745-845 | 5 | 5 | 3 | 3 | 16 | | 800-900 | 6 | 6 | 3 | 2 | 17 | | 815-915 | 5 | 5 | 5 | 2 | 17 | | 830-930 | 6 | 6 | 6 | 4 | 22 | | 845-945 | 8 | 8 | 3 | 4 | 23 | | 900-1000 | 12 | 12 | 3 | 4 | 31 | | BICYCLE COU | NTS | | | | | |--------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 0 | 0 | | 715-730 | 0 | 0 | 0 | 0 | 0 | | 730-745 | 0 | 0 | 0 | 0 | 0 | | 745-800 | 3 | 0 | 2 | 0 | 5 | | 800-815 | 2 | 0 | 0 | 0 | 2 | | 815-830 | 0 | 0 | 0 | 0 | 0 | | 830-845 | 0 | 0 | 1 | 0 | 1 | | 845-900 | 3 | 0 | 0 | 0 | 3 | | 900-915 | 0 | 0 | 0 | 0 | 0 | | 915-930 | 0 | 0 | 0 | 0 | 0 | | 930-945 | 1 | 0 | 0 | 0 | 1 | | 945-1000 | 1 | 0 | 0 | 0 | 1 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 3 | 0 | 2 | 0 | 5 | | 715-815 | 5 | 0 | 2 | 0 | 7 | | 730-830 | 5 | 0 | 2 | 0 | 7 | | 745-845 | 5 | 0 | 3 | 0 | 8 | | 800-900 | 5 | 0 | 1 | 0 | 6 | | 815-915 | 3 | 0 | 1 | 0 | 4 | | 830-930 | 3 | 0 | 1 | 0 | 4 | | 845-945 | 4 | 0 | 0 | 0 | 4 | | 900-1000 | 2 | 0 | 0 | 0 | 2 | | APPROACH | APPROACH SUMMARIES | | | | | | | | | | | | | | |-----------|--------------------|-------|--|------------|------|--|-------|-------|--|-------|-------|--|--|--| | 7. TROMON | | APRCH | | EAST APRCH | | | SOUTH | APRCH | | WEST | APRCH | | | | | | APRCH | EXIT | | | | | 700-800 | 57 | 168 | | 1309 | 321 | | 29 | 11 | | 367 | 1262 | | | | | 715-815 | 55 | 164 | | 1351 | 359 | | 33 | 14 | | 398 | 1300 | | | | | 730-830 | 59 | 163 | | 1276 | 403 | | 36 | 11 | | 434 | 1228 | | | | | 745-845 | 54 | 151 | | 1238 | 423 | | 35 | 13 | | 446 | 1186 | | | | | 800-900 | 50 | 135 | | 1120 | 413 | | 44 | 16 | | 419 | 1069 | | | | | 815-915 | 56 | 132 | | 1010 | 426 | | 60 | 16 | | 418 | 970 | | | | | 830-930 | 62 | 120 | | 919 | 422 | | 70 | 14 | | 397 | 892 | | | | | 845-945 | 69 | 133 | | 837 | 423 | | 81 | 13 | | 390 | 808 | | | | | 900-1000 | 83 | 141 | | 768 | 416 | | 80 | 13 | | 392 | 753 | | | | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S VICKSBURG AVENUE E/W CENTURY BOULEVARD | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 29 | 0 | 0 | 0 | 13 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 287 | | 715-730 | 34 | 0 | 0 | 0 | 27 | 211 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 285 | | 730-745 | 42 | 0 | 0 | 0 | 19 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 289 | | 745-800 | 74 | 0 | 0 | 0 | 31 | 204 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 324 | | 800-815 | 72 | 0 | 0 | 0 | 24 | 211 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19 | 1 | 327 | | 815-830 | 64 | 0 | 0 | 0 | 22 | 228 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 327 | | 830-845 | 39 | 0 | 0 | 0 | 22 | 232 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 | 309 | | 845-900 | 29 | 0 | 0 | 0 | 26 | 242 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 310 | | 900-915 | 45 | 0 | 0 | 0 | 19 | 240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 318 | | 915-930 | 41 | 0 | 0 | 0 | 19 | 237 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 307 | | 930-945 | 40 | 0 | 0 | 0 | 17 | 216 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 286 | | 945-1000 | 52 | 0 | 0 | 0 | 18 | 230 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 313 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 179 | 0 | 0 | 0 | 90 | 863 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52 | 1 | 1185 | | 715-815 | 222 | 0 | 0 | 0 | 101 | 846 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54 | 2 | 1225 | | 730-830 | 252 | 0 | 0 | 0 | 96 | 863 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 55 | 1 | 1267 | | 745-845 | 249 | 0 | 0 | 0 | 99 | 875 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 63 | 1 | 1287 | | 800-900 | 204 | 0 | 0 | 0 | 94 | 913 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 61 | 1 | 1273 | | 815-915 | 177 | 0 | 0 | 0 | 89 | 942 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 0 | 1264 | | 830-930 | 154 | 0 | 0 | 0 | 86 | 951 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53 | 0 | 1244 | | 845-945 | 155 | 0 | 0 | 0 | 81 | 935 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 1221 | | 900-1000 | 178 | 0 | 0 | 0 | 73 | 923 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49 | 1 | 1224 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------
-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 9 | 9 | 0 | 0 | 18 | | 715-730 | 5 | 5 | 0 | 0 | 10 | | 730-745 | 17 | 17 | 0 | 0 | 34 | | 745-800 | 13 | 13 | 0 | 0 | 26 | | 800-815 | 10 | 10 | 0 | 0 | 20 | | 815-830 | 17 | 17 | 0 | 0 | 34 | | 830-845 | 20 | 20 | 0 | 0 | 40 | | 845-900 | 22 | 22 | 0 | 0 | 44 | | 900-915 | 6 | 6 | 0 | 0 | 12 | | 915-930 | 9 | 9 | 0 | 0 | 18 | | 930-945 | 14 | 14 | 0 | 0 | 28 | | 945-1000 | 8 | 8 | 0 | 0 | 16 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 44 | 44 | 0 | 0 | 88 | | 715-815 | 45 | 45 | 0 | 0 | 90 | | 730-830 | 57 | 57 | 0 | 0 | 114 | | 745-845 | 60 | 60 | 0 | 0 | 120 | | 800-900 | 69 | 69 | 0 | 0 | 138 | | 815-915 | 65 | 65 | 0 | 0 | 130 | | 830-930 | 57 | 57 | 0 | 0 | 114 | | 845-945 | 51 | 51 | 0 | 0 | 102 | | 900-1000 | 37 | 37 | 0 | 0 | 74 | | BICYCLE COU | | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 1 | 0 | 0 | 0 | | | 715-730 | 1 | 0 | 0 | 0 | | | 730-745 | 0 | 0 | 0 | 0 | (| | 745-800 | 1 | 0 | 0 | 0 | | | 800-815 | 0 | 0 | 0 | 0 | (| | 815-830 | 0 | 0 | 0 | 0 | (| | 830-845 | 1 | 0 | 0 | 0 | | | 845-900 | 1 | 0 | 0 | 0 | | | 900-915 | 0 | 0 | 0 | 0 | (| | 915-930 | 1 | 0 | 0 | 0 | | | 930-945 | 1 | 0 | 0 | 0 | | | 945-1000 | 1 | 0 | 0 | 0 | | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 3 | 0 | 0 | 0 | ; | | 715-815 | 2 | 0 | 0 | 0 | 2 | | 730-830 | 1 | 0 | 0 | 0 | | | 745-845 | 2 | 0 | 0 | 0 | - 2 | | 800-900 | 2 | 0 | 0 | 0 | - 2 | | 815-915 | 2 | 0 | 0 | 0 | 2 | | 830-930 | 3 | 0 | 0 | 0 | : | | 845-945 | 3 | 0 | 0 | 0 | | | 900-1000 | 3 | 0 | 0 | 0 | | | ABBBBBBBB | OLIMANAAA | 150 | | | | | | | |-----------|-----------|-------|------------|------|-------------|------|------------|------| | APPROACH | SUMMAR | IES | | | | | | | | | NORTH | APRCH | EAST APRCH | | SOUTH APRCH | | WEST APRCH | | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 700-800 | 179 | 142 | 953 | 0 | 0 | 0 | 53 | 1043 | | 715-815 | 222 | 155 | 947 | 0 | 0 | 0 | 56 | 1070 | | 730-830 | 252 | 151 | 959 | 0 | 0 | 0 | 56 | 1116 | | 745-845 | 249 | 162 | 974 | 0 | 0 | 0 | 64 | 1125 | | 800-900 | 204 | 155 | 1007 | 0 | 0 | 0 | 62 | 1118 | | 815-915 | 177 | 145 | 1031 | 0 | 0 | 0 | 56 | 1119 | | 830-930 | 154 | 139 | 1037 | 0 | 0 | 0 | 53 | 1105 | | 845-945 | 155 | 131 | 1016 | 0 | 0 | 0 | 50 | 1090 | | 900-1000 | 178 | 122 | 996 | 0 | 0 | 0 | 50 | 1102 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S AIRPORT BOULEVARD N/S AIRPORT BOULEVARD E/W ARBOR VITAE STREET / WESTCHESTER PARKWAY | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 39 | 142 | 13 | 0 | 78 | 237 | 39 | 0 | 25 | 224 | 47 | 0 | 21 | 15 | 11 | 0 | 891 | | 715-730 | 36 | 167 | 14 | 0 | 96 | 203 | 49 | 0 | 35 | 305 | 60 | 0 | 37 | 34 | 4 | 0 | 1040 | | 730-745 | 33 | 155 | 16 | 0 | 93 | 253 | 54 | 0 | 44 | 232 | 66 | 0 | 32 | 37 | 7 | 0 | 1022 | | 745-800 | 36 | 183 | 11 | 0 | 88 | 245 | 67 | 0 | 45 | 220 | 55 | 0 | 44 | 42 | 9 | 0 | 1045 | | 800-815 | 35 | 184 | 17 | 0 | 70 | 233 | 46 | 0 | 33 | 181 | 69 | 0 | 36 | 59 | 11 | 0 | 974 | | 815-830 | 46 | 182 | 17 | 0 | 72 | 167 | 63 | 0 | 38 | 209 | 46 | 0 | 47 | 46 | 9 | 0 | 942 | | 830-845 | 26 | 156 | 7 | 0 | 103 | 186 | 62 | 0 | 41 | 224 | 63 | 0 | 39 | 45 | 12 | 0 | 964 | | 845-900 | 26 | 181 | 17 | 0 | 66 | 206 | 59 | 0 | 41 | 215 | 44 | 0 | 35 | 56 | 5 | 0 | 951 | | 900-915 | 29 | 166 | 15 | 0 | 50 | 151 | 56 | 0 | 38 | 184 | 66 | 0 | 43 | 28 | 18 | 0 | 844 | | 915-930 | 41 | 199 | 18 | 0 | 49 | 116 | 64 | 0 | 34 | 159 | 40 | 0 | 47 | 42 | 23 | 0 | 832 | | 930-945 | 35 | 120 | 28 | 0 | 44 | 98 | 61 | 0 | 43 | 152 | 50 | 0 | 32 | 42 | 23 | 0 | 728 | | 945-1000 | 31 | 143 | 12 | 0 | 54 | 94 | 35 | 0 | 36 | 161 | 65 | 0 | 33 | 50 | 16 | 0 | 730 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 144 | 647 | 54 | 0 | 355 | 938 | 209 | 0 | 149 | 981 | 228 | 0 | 134 | 128 | 31 | 0 | 3998 | | 715-815 | 140 | 689 | 58 | 0 | 347 | 934 | 216 | 0 | 157 | 938 | 250 | 0 | 149 | 172 | 31 | 0 | 4081 | | 730-830 | 150 | 704 | 61 | 0 | 323 | 898 | 230 | 0 | 160 | 842 | 236 | 0 | 159 | 184 | 36 | 0 | 3983 | | 745-845 | 143 | 705 | 52 | 0 | 333 | 831 | 238 | 0 | 157 | 834 | 233 | 0 | 166 | 192 | 41 | 0 | 3925 | | 800-900 | 133 | 703 | 58 | 0 | 311 | 792 | 230 | 0 | 153 | 829 | 222 | 0 | 157 | 206 | 37 | 0 | 3831 | | 815-915 | 127 | 685 | 56 | 0 | 291 | 710 | 240 | 0 | 158 | 832 | 219 | 0 | 164 | 175 | 44 | 0 | 3701 | | 830-930 | 122 | 702 | 57 | 0 | 268 | 659 | 241 | 0 | 154 | 782 | 213 | 0 | 164 | 171 | 58 | 0 | 3591 | | 845-945 | 131 | 666 | 78 | 0 | 209 | 571 | 240 | 0 | 156 | 710 | 200 | 0 | 157 | 168 | 69 | 0 | 3355 | | 900-1000 | 136 | 628 | 73 | 0 | 197 | 459 | 216 | 0 | 151 | 656 | 221 | 0 | 155 | 162 | 80 | 0 | 3134 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 1 | 1 | 1 | 0 | 3 | | 715-730 | 0 | 0 | 4 | 1 | 5 | | 730-745 | 6 | 6 | 4 | 1 | 17 | | 745-800 | 1 | 1 | 6 | 2 | 10 | | 800-815 | 0 | 0 | 2 | 2 | 4 | | 815-830 | 1 | 1 | 2 | 2 | 6 | | 830-845 | 1 | 1 | 1 | 2 | 5 | | 845-900 | 2 | 2 | 11 | 1 | 16 | | 900-915 | 1 | 1 | 6 | 1 | 9 | | 915-930 | 2 | 2 | 0 | 5 | 9 | | 930-945 | 4 | 4 | 1 | 0 | 9 | | 945-1000 | 1 | 1 | 4 | 3 | 9 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 8 | 8 | 15 | 4 | 35 | | 715-815 | 7 | 7 | 16 | 6 | 36 | | 730-830 | 8 | 8 | 14 | 7 | 37 | | 745-845 | 3 | 3 | 11 | 8 | 25 | | 800-900 | 4 | 4 | 16 | 7 | 31 | | 815-915 | 5 | 5 | 20 | 6 | 36 | | 830-930 | 6 | 6 | 18 | 9 | 39 | | 845-945 | 9 | 9 | 18 | 7 | 43 | | 900-1000 | 8 | 8 | 11 | 9 | 36 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 3 | 2 | 0 | 0 | 5 | | 715-730 | 1 | 0 | 1 | 1 | 3 | | 730-745 | 0 | 0 | 0 | 0 | 0 | | 745-800 | 1 | 0 | 1 | 0 | 2 | | 800-815 | 5 | 0 | 0 | 0 | 5 | | 815-830 | 1 | 0 | 0 | 0 | 1 | | 830-845 | 1 | 0 | 0 | 1 | 2 | | 845-900 | 0 | 1 | 2 | 0 | 3 | | 900-915 | 1 | 0 | 1 | 0 | 2 | | 915-930 | 3 | 2 | 0 | 0 | 5 | | 930-945 | 0 | 0 | 1 | 0 | 1 | | 945-1000 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 5 | 2 | 2 | 1 | 10 | | 715-815 | 7 | 0 | 2 | 1 | 10 | | 730-830 | 7 | 0 | 1 | 0 | 8 | | 745-845 | 8 | 0 | 1 | 1 | 10 | | 800-900 | 7 | 1 | 2 | 1 | 11 | | 815-915 | 3 | 1 | 3 | 1 | 8 | | 830-930 | 5 | 3 | 3 | 1 | 12 | | 845-945 | 4 | 3 | 4 | 0 | 11 | | 900-1000 | 4 | 2 | 2 | 0 | 8 | | APPROACH | SUMMAR | IES | | | | | | | |----------|--------|-------|--------|-------|-------|-------|-------|-------| | | | APRCH | EAST / | APRCH | SOUTH | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 700-800 | 845 | 1367 | 1502 | 331 | 1358 | 990 | 293 | 1310 | | 715-815 | 887 | 1316 | 1497 | 387 | 1345 | 1054 | 352 | 1324 | | 730-830 | 915 | 1201 | 1451 | 405 | 1238 | 1093 | 379 | 1284 | | 745-845 | 900 | 1208 | 1402 | 401 | 1224 | 1109 | 399 | 1207 | | 800-900 | 894 | 1177 | 1333 | 417 | 1204 | 1090 | 400 | 1147 | | 815-915 | 868 | 1167 | 1241 | 389 | 1209 | 1089 | 383 | 1056 | | 830-930 | 881 | 1108 | 1168 | 382 | 1149 | 1107 | 393 | 994 | | 845-945 | 875 | 988 | 1020 | 402 | 1066 | 1063 | 394 | 902 | | 900-1000 | 837 | 933 | 872 | 386 | 1028 | 999 | 397 | 816 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S AIRPORT BOULEVARD E/W 96TH STREET | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 93 | 103 | 11 | 0 | 36 | 12 | 7 | 0 | 11 | 263 | 23 | 0 | 7 | 6 | 15 | 0 | 587 | | 715-730 | 92 | 135 | 17 | 0 | 73 | 10 | 7 | 0 | 5 | 288 | 25 | 0 | 14 | 10 | 20 | 0 | 696 | | 730-745 | 85 | 146 | 20 | 0 | 76 | 12 | 11 | 0 | 12 | 246 | 27 | 0 | 4 | 17 | 28 | 0 | 684 | | 745-800 | 109 | 172 | 12 | 0 | 26 | 11 | 4 | 0 | 11 | 264 | 27 | 0 | 15 | 13 | 17 | 0 | 681 | | 800-815 | 100 | 155 | 19 | 1 | 25 | 16 | 8 | 0 | 10 | 239 | 16 | 0 | 15 | 9 | 14 | 0 | 627 | | 815-830 | 113 | 161 | 21 | 0 | 34 | 11 | 6 | 0 | 4 | 229 | 16 | 0 | 19 | 9 | 21 | 0 | 644 | | 830-845 | 90 | 142 | 15 | 0 | 36 | 12 | 6 | 0 | 2 | 291 | 23 | 0 | 18 | 13 | 20 | 0 | 668 | | 845-900 | 98 | 163 | 24 | 0 | 39 | 4 | 6 | 0 | 5 | 236 | 20 | 0 | 14 | 6 | 24 | 0 | 639 | | 900-915 | 110 | 143 | 8 | 0 | 23 | 10 | 9 | 0 | 11 | 218 | 18 | 0 | 17 | 10 | 29 | 0 | 606 | | 915-930 | 143 | 165 | 16 | 0 | 23 | 9 | 12 | 0 | 6 | 204 | 19 | 0 | 17 | 13 | 24 | 0 | 651 | | 930-945 | 65 | 131 | 11 | 0 | 15 | 5 | 5
| 0 | 10 | 205 | 30 | 0 | 9 | 12 | 32 | 0 | 530 | | 945-1000 | 83 | 126 | 8 | 0 | 22 | 6 | 7 | 0 | 6 | 192 | 22 | 0 | 16 | 13 | 29 | 0 | 530 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 379 | 556 | 60 | 0 | 211 | 45 | 29 | 0 | 39 | 1061 | 102 | 0 | 40 | 46 | 80 | 0 | 2648 | | 715-815 | 386 | 608 | 68 | 1 | 200 | 49 | 30 | 0 | 38 | 1037 | 95 | 0 | 48 | 49 | 79 | 0 | 2688 | | 730-830 | 407 | 634 | 72 | 1 | 161 | 50 | 29 | 0 | 37 | 978 | 86 | 0 | 53 | 48 | 80 | 0 | 2636 | | 745-845 | 412 | 630 | 67 | 1 | 121 | 50 | 24 | 0 | 27 | 1023 | 82 | 0 | 67 | 44 | 72 | 0 | 2620 | | 800-900 | 401 | 621 | 79 | 1 | 134 | 43 | 26 | 0 | 21 | 995 | 75 | 0 | 66 | 37 | 79 | 0 | 2578 | | 815-915 | 411 | 609 | 68 | 0 | 132 | 37 | 27 | 0 | 22 | 974 | 77 | 0 | 68 | 38 | 94 | 0 | 2557 | | 830-930 | 441 | 613 | 63 | 0 | 121 | 35 | 33 | 0 | 24 | 949 | 80 | 0 | 66 | 42 | 97 | 0 | 2564 | | 845-945 | 416 | 602 | 59 | 0 | 100 | 28 | 32 | 0 | 32 | 863 | 87 | 0 | 57 | 41 | 109 | 0 | 2426 | | 900-1000 | 401 | 565 | 43 | 0 | 83 | 30 | 33 | 0 | 33 | 819 | 89 | 0 | 59 | 48 | 114 | 0 | 2317 | | PEDESTRIAN | COUNTS | 3 | | | | |---------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 4 | 4 | 3 | 4 | 15 | | 715-730 | 12 | 12 | 3 | 6 | 33 | | 730-745 | 3 | 3 | 4 | 4 | 14 | | 745-800 | 8 | 8 | 8 | 4 | 28 | | 800-815 | 3 | 3 | 3 | 5 | 14 | | 815-830 | 3 | 3 | 4 | 3 | 13 | | 830-845 | 3 | 3 | 7 | 5 | 18 | | 845-900 | 2 | 2 | 7 | 0 | 11 | | 900-915 | 4 | 4 | 2 | 3 | 13 | | 915-930 | 5 | 5 | 1 | 5 | 16 | | 930-945 | 6 | 6 | 5 | 3 | 20 | | 945-1000 | 2 | 2 | 5 | 1 | 10 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 27 | 27 | 18 | 18 | 90 | | 715-815 | 26 | 26 | 18 | 19 | 89 | | 730-830 | 17 | 17 | 19 | 16 | 69 | | 745-845 | 17 | 17 | 22 | 17 | 73 | | 800-900 | 11 | 11 | 21 | 13 | 56 | | 815-915 | 12 | 12 | 20 | 11 | 55 | | 830-930 | 14 | 14 | 17 | 13 | 58 | | 845-945 | 17 | 17 | 15 | 11 | 60 | | 900-1000 | 17 | 17 | 13 | 12 | 59 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 0 | 0 | | 715-730 | 1 | 1 | 1 | 1 | 4 | | 730-745 | 0 | 1 | 0 | 0 | 1 | | 745-800 | 0 | 0 | 0 | 0 | 0 | | 800-815 | 1 | 0 | 0 | 1 | 2 | | 815-830 | 0 | 0 | 0 | 0 | 0 | | 830-845 | 1 | 0 | 0 | 1 | 2 | | 845-900 | 0 | 1 | 0 | 0 | 1 | | 900-915 | 0 | 0 | 0 | 0 | 0 | | 915-930 | 0 | 1 | 0 | 0 | 1 | | 930-945 | 0 | 0 | 0 | 1 | 1 | | 945-1000 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 1 | 2 | 1 | 1 | 5 | | 715-815 | 2 | 2 | 1 | 2 | 7 | | 730-830 | 1 | 1 | 0 | 1 | 3 | | 745-845 | 2 | 0 | 0 | 2 | 4 | | 800-900 | 2 | 1 | 0 | 2 | 5 | | 815-915 | 1 | 1 | 0 | 1 | 3 | | 830-930 | 1 | 2 | 0 | 1 | 4 | | 845-945 | 0 | 2 | 0 | 1 | 3 | | 900-1000 | 0 | 1 | 0 | 1 | 2 | | APPROACH | SUMMAR | IES | | | | | | | |-----------------|--------|-------|--------|-------|-------|-------|------------|------| | | NORTH | APRCH | EAST A | APRCH | SOUTH | APRCH | WEST APRCH | | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 700-800 | 995 | 1352 | 285 | 145 | 1202 | 625 | 166 | 526 | | 715-815 | 1063 | 1317 | 279 | 155 | 1170 | 686 | 176 | 530 | | 730-830 | 1114 | 1220 | 240 | 157 | 1101 | 716 | 181 | 543 | | 745-845 | 1110 | 1217 | 195 | 138 | 1132 | 721 | 183 | 544 | | 800-900 | 1102 | 1209 | 203 | 137 | 1091 | 713 | 182 | 519 | | 815-915 | 1088 | 1200 | 196 | 128 | 1073 | 704 | 200 | 525 | | 830-930 | 1117 | 1167 | 189 | 129 | 1053 | 712 | 205 | 556 | | 845-945 | 1077 | 1072 | 160 | 132 | 982 | 691 | 207 | 531 | | 900-1000 | 1009 | 1016 | 146 | 124 | 941 | 657 | 221 | 520 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: THURSDAY MARCH 7, 2019 PERIOD: 7:00 AM TO 10:00 AM INTERSECTION: N/S CENTURY BOULEVARD E/W AIRPORT BOULEVARD | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-715 | 48 | 6 | 34 | 0 | 180 | 457 | 4 | 3 | 21 | 11 | 2 | 0 | 2 | 180 | 147 | 13 | 1108 | | 715-730 | 66 | 7 | 37 | 0 | 196 | 425 | 6 | 4 | 14 | 8 | 5 | 0 | 7 | 216 | 145 | 8 | 1144 | | 730-745 | 67 | 6 | 59 | 0 | 208 | 377 | 5 | 2 | 12 | 17 | 8 | 0 | 7 | 227 | 141 | 10 | 1146 | | 745-800 | 69 | 12 | 72 | 0 | 146 | 327 | 7 | 3 | 8 | 7 | 10 | 0 | 2 | 204 | 155 | 11 | 1033 | | 800-815 | 89 | 5 | 46 | 0 | 168 | 364 | 2 | 3 | 7 | 9 | 7 | 0 | 10 | 191 | 135 | 10 | 1046 | | 815-830 | 85 | 11 | 63 | 0 | 148 | 387 | 8 | 4 | 6 | 4 | 4 | 0 | 4 | 216 | 142 | 7 | 1089 | | 830-845 | 79 | 7 | 52 | 0 | 133 | 344 | 7 | 2 | 11 | 16 | 11 | 0 | 9 | 221 | 134 | 11 | 1037 | | 845-900 | 84 | 5 | 55 | 0 | 129 | 439 | 11 | 3 | 5 | 9 | 6 | 0 | 7 | 236 | 137 | 16 | 1142 | | 900-915 | 81 | 8 | 58 | 0 | 121 | 415 | 4 | 6 | 13 | 8 | 3 | 0 | 2 | 228 | 136 | 14 | 1097 | | 915-930 | 94 | 7 | 81 | 0 | 106 | 368 | 4 | 6 | 6 | 12 | 7 | 0 | 2 | 218 | 137 | 10 | 1058 | | 930-945 | 89 | 8 | 86 | 0 | 127 | 379 | 6 | 5 | 5 | 6 | 4 | 0 | 5 | 263 | 118 | 10 | 1111 | | 945-1000 | 118 | 5 | 69 | 0 | 109 | 356 | 8 | 3 | 3 | 9 | 6 | 0 | 1 | 272 | 136 | 10 | 1105 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 700-800 | 250 | 31 | 202 | 0 | 730 | 1586 | 22 | 12 | 55 | 43 | 25 | 0 | 18 | 827 | 588 | 42 | 4431 | | 715-815 | 291 | 30 | 214 | 0 | 718 | 1493 | 20 | 12 | 41 | 41 | 30 | 0 | 26 | 838 | 576 | 39 | 4369 | | 730-830 | 310 | 34 | 240 | 0 | 670 | 1455 | 22 | 12 | 33 | 37 | 29 | 0 | 23 | 838 | 573 | 38 | 4314 | | 745-845 | 322 | 35 | 233 | 0 | 595 | 1422 | 24 | 12 | 32 | 36 | 32 | 0 | 25 | 832 | 566 | 39 | 4205 | | 800-900 | 337 | 28 | 216 | 0 | 578 | 1534 | 28 | 12 | 29 | 38 | 28 | 0 | 30 | 864 | 548 | 44 | 4314 | | 815-915 | 329 | 31 | 228 | 0 | 531 | 1585 | 30 | 15 | 35 | 37 | 24 | 0 | 22 | 901 | 549 | 48 | 4365 | | 830-930 | 338 | 27 | 246 | 0 | 489 | 1566 | 26 | 17 | 35 | 45 | 27 | 0 | 20 | 903 | 544 | 51 | 4334 | | 845-945 | 348 | 28 | 280 | 0 | 483 | 1601 | 25 | 20 | 29 | 35 | 20 | 0 | 16 | 945 | 528 | 50 | 4408 | | 900-1000 | 382 | 28 | 294 | 0 | 463 | 1518 | 22 | 20 | 27 | 35 | 20 | 0 | 10 | 981 | 527 | 44 | 4371 | | PEDESTRIAN | COUNTS | 3 | | | | |---------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 8 | 8 | 0 | 4 | 20 | | 715-730 | 1 | 1 | 0 | 1 | 3 | | 730-745 | 8 | 8 | 0 | 0 | 16 | | 745-800 | 7 | 7 | 1 | 0 | 15 | | 800-815 | 9 | 9 | 0 | 6 | 24 | | 815-830 | 21 | 21 | 0 | 1 | 43 | | 830-845 | 7 | 7 | 0 | 1 | 15 | | 845-900 | 1 | 1 | 0 | 1 | 3 | | 900-915 | 8 | 8 | 0 | 4 | 20 | | 915-930 | 8 | 8 | 0 | 4 | 20 | | 930-945 | 4 | 4 | 0 | 7 | 15 | | 945-1000 | 4 | 4 | 0 | 1 | 9 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 24 | 24 | 1 | 5 | 54 | | 715-815 | 25 | 25 | 1 | 7 | 58 | | 730-830 | 45 | 45 | 1 | 7 | 98 | | 745-845 | 44 | 44 | 1 | 8 | 97 | | 800-900 | 38 | 38 | 0 | 9 | 85 | | 815-915 | 37 | 37 | 0 | 7 | 81 | | 830-930 | 24 | 24 | 0 | 10 | 58 | | 845-945 | 21 | 21 | 0 | 16 | 58 | | 900-1000 | 24 | 24 | 0 | 16 | 64 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-715 | 0 | 0 | 0 | 0 | 0 | | 715-730 | 0 | 0 | 0 | 0 | 0 | | 730-745 | 0 | 0 | 0 | 0 | 0 | | 745-800 | 0 | 0 | 0 | 0 | 0 | | 800-815 | 0 | 1 | 0 | 0 | 1 | | 815-830 | 1 | 0 | 0 | 0 | 1 | | 830-845 | 0 | 0 | 0 | 0 | 0 | | 845-900 | 2 | 0 | 1 | 0 | 3 | | 900-915 | 0 | 0 | 0 | 0 | 0 | | 915-930 | 2 | 0 | 0 | 0 | 2 | | 930-945 | 2 | 0 | 2 | 1 | 5 | | 945-1000 | 1 | 0 | 0 | 0 | 1 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 700-800 | 0 | 0 | 0 | 0 | 0 | | 715-815 | 0 | 1 | 0 | 0 | 1 | | 730-830 | 1 | 1 | 0 | 0 | 2 | | 745-845 | 1 | 1 | 0 | 0 | 2 | | 800-900 | 3 | 1 | 1 | 0 | 5 | | 815-915 | 3 | 0 | 1 | 0 | 4 | | 830-930 | 4 | 0 | 1 | 0 | 5 | | 845-945 | 6 | 0 | 3 | 1 | 10 | | 900-1000 | 5 | 0 | 2 | 1 | 8 | | APPROACH | SUMMAR | IES | | | | | | | |----------|--------|-------|--------|-------|-------|-------|-------|-------| | | NORTH | APRCH | EAST / | APRCH | SOUTH | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 700-800 | 483 | 1361 | 2350 | 1096 | 123 | 71 | 1475 | 1903 | | 715-815 | 535 | 1335 | 2243 | 1105 | 112 | 76 | 1479 | 1853 | | 730-830 | 584 | 1280 | 2159 | 1123 | 99 | 79 | 1472 | 1832 | | 745-845 | 590 | 1197 | 2053 | 1109 | 100 | 84 | 1462 | 1815 | | 800-900 | 581 | 1164 | 2152 | 1121 | 95 | 86 | 1486 | 1943 | | 815-915 | 588 | 1117 | 2161 | 1179 | 96 | 83 | 1520 | 1986 | | 830-930 | 611 | 1078 | 2098 | 1201 | 107 | 73 | 1518 | 1982 | | 845-945 | 656 | 1046 | 2129 | 1274 | 84 | 69 | 1539 | 2019 | | 900-1000 | 704 | 1025 | 2023 | 1322 | 82 | 60 | 1562 | 1964 | # INTERSECTION TURNING MOVEMENT COUNTS PREPARED BY: AimTD LLC. tel: 714 253 7888 cs@aimtd.com | | <u>DATE:</u>
Thu, Apr 26, 18 | | | | Inglewood
La Cieneo
I-405 SB | i
ja | | | o cswaii | PROJEC
LOCATI
CONTR | ON #: | IBEC
15
SIGNAL | | |
| | | | | |----|---------------------------------|-------------|------------------|-------------|------------------------------------|------------------|-------------|---------|------------|---------------------------|-------------|----------------------|-------------|--------------|----------------|--------|-----------|--------------|-------| | | NOTES: | | | | | | | | | | AM
PM | | A
N | | | | | | | | | | | | | | | | | | | MD
OTHER | ∢ W | s | E► | | | Add U-Tun | ns to Left T | lurns | | | | I NC | ORTHBOU | IND | | UTHBOL | INID | | ASTBOU | ND | OTHER | ESTBOU | ▼ ID | | ļ _. | | TURNS | | | | | | NL | La Cienega | NR | | La Cienega
ST | SR | | 405 SB Ram | | | I-405 SB Ram | | TOTAL | NB | SB | EB | wb I | TTL | | | LANES: | X | 2 | 0 | 2 | 2 | X | X | X | X | X | X | 2 | | 0 | 0 | 0 | 0 | TIL | | | 7:00 AM
7:15 AM | 0 | 269
301 | 13
11 | 82
116 | 93
129 | 0 | 0 | 0 | 0 | 0 | 0 | 14
20 | 472
577 | 0 | 0 | 0 | 0 | 0 | | | 7:30 AM | 1 | 291 | 10 | 128 | 132 | 0 | 0 | 0 | 0 | Ö | Ö | 19 | 581 | 1 | Ö | 0 | 0 | 1 | | | 7:45 AM
8:00 AM | 0 | 248
240 | 16
11 | 121
122 | 167
186 | 0 | 0 | 0 | 0 | 0 | 0 | 27
18 | 579
577 | 0 | 0 | 0 | 0 | 0 | | | 8:15 AM | 0 | 235 | 6 | 107 | 144 | Ö | Ö | ő | Ö | 0 | 0 | 22 | 514 | 0 | 1 | 0 | 0 | 1 | | | 8:30 AM | 0 | 193 | 7 | 107 | 131 | 0 | 0 | 0 | 0 | 0 | 0 | 35 | 473 | 0 | 0 | 0 | 0 | 0 | | Ψ | 8:45 AM
VOLUMES | 2 | 206
1,983 | 9
83 | 62
845 | 1,111 | 0 | 0 | 0 | 0 | 0 | 0 | 18
173 | 424
4,197 | 2 | 1 | 0 | 0 | 3 | | | APPROACH % | 0% | 96% | 4% | 43% | 57% | 0% | 0% | 0% | 0% | 0% | 0% | 100% | 1,137 | | | U | - | | | | APP/DEPART | 2,068 | / | 2,157 | 1,956 | / | 1,113 | 0 | | 927 | 173 | | 0 | 0 | İ | | | | | | | BEGIN PEAK HR
VOLUMES | 1 | 7:15 AM
1,080 | 1
48 | 487 | 614 | 0 | 0 | 0 | 0 | 0 | 0 | 84 | 2,314 | İ | | | | | | | APPROACH % | 0% | 96% | 4% | 44% | 56% | 0% | 0% | 0% | 0% | 0% | 0% | 100% | | İ | | | | | | | PEAK HR FACTOR
APP/DEPART | 1,129 | 0.905 | 1 164 | 1,101 | 0.894 | 615 | 0 | 0.000 | 535 | 84 | 0.778 | 0 | 0.996 | İ | | | | | | - | 4:00 PM | 0 | 144 | 1,164
11 | 89 | 221 | 012 | 0 | 1 6 | 0 | 0 | 0 | 135 | 600 | 0 | 1 | 0 | 0 | 1 | | | 4:15 PM | 0 | 142 | 7 | 88 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 114 | 551 | 0 | 3 | 0 | 0 | 3 | | | 4:30 PM
4:45 PM | 0 | 176
135 | 13
8 | 81
73 | 227
215 | 0 | 0 | 0 | 0 | 0 | 0 | 131
144 | 628
575 | 0 | 1 | 0 | 0 | 1 | | | 5:00 PM | 0 | 165 | 8 | 114 | 268 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 673 | 0 | 4 | 0 | 0 | 4 | | | 5:15 PM
5:30 PM | 0 | 145
116 | 6
10 | 101
113 | 226
195 | 0 | 0 | 0 | 0 | 0 | 0 | 113
95 | 591
529 | 0 | 2 | 0 | 0 | 2 | | 5 | | 0 | 99 | 8 | 93 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 124 | 544 | 0 | 1 | 0 | 0 | 1 | | Σ | VOLUMES | 0 | 1,122 | 71 | 752 | 1,772 | 0 | 0 | 0 | 0 | 0 | 0 | 974 | 4,691 | 0 | 13 | 0 | 0 | 13 | | | APPROACH % APP/DEPART | 0%
1,193 | 94% | 6%
2,109 | 30%
2,524 | 70% | 0%
1,772 | 0%
0 | 0% | 0%
810 | 0%
974 | 0% | 100% | 0 | İ | | | | | | | BEGIN PEAK HR | | 4:30 PM | 1 | | | | | | | | | | | İ | | | | | | | VOLUMES
APPROACH % | 0
0% | 621
95% | 35
5% | 369
28% | 936
72% | 0
0% | 0
0% | 0
0% | 0
0% | 0
0% | 0
0% | 506
100% | 2,467 | İ | | | | | | | PEAK HR FACTOR | | 0.868 | | | 0.854 | | | 0.000 | | | 0.878 | | 0.916 | İ | | | | | | L | APP/DEPART | 656 | | 1,133 | 1,305 | / | 936 | 0 | / | 398 | 506 | / | 0 | 0 | i | | | | | | | | | | | L | a Ciene | ga | | | | | | | | | | | | | | | | | | | ← N | ORTH SI | DE→ | | | | _ | | | | | | | | | | | | | | 1 | | | | 1 | | | | | | | | | | | | | | I-405 SB | Ramps | : WE | ST SIDE | | | | EAST S | IDE | I-405 S | SB Ram | ps | | | | | | | | | | | | | + | l ← s | OUTH SI | DF—→ | + | | | - | | | | | | | | | | | | | | | | a Ciene | | | | | | | | | | | | | | | | | 7 | PED | FSTDTA | N + BIKE | | | '
1 | | PEDECT | DIAN C | ROSSING | 35 | 1 | | ICYCLE | CBUC | STNC | - | | L | |] | N SIDE | | | W SIDE | | | | | | W SIDE | | 1 | NS | SS | ES | | TOTAL | | | 7:00 AM | | 0 | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 0 | 0 | | | 7:15 AM
7:30 AM | 4 | 0 | 0 | 3 | 1 | 4
5 | | 0 | 0 | 3 | 1 | 4
5 | | 0 | 0 | 0 | 0 | 0 | | | 7:45 AM | 1 | 0 | 0 | 1 | 2 | 3 | 1 | 0 | 0 | 1 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | | Σ | 8:00 AM | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | | | 8:15 AM | | 0 | 0 | 2 | 0 | 2 | | 0 | 0 | 2 | 0 | 2 | | 0 | 0 | 0 | 0 | 0 | | | 8:30 AM
8:45 AM | | 0 | 2 | 0
6 | 4 | 2
12 | ł | 0 | 0 | 5 | 3 | 10 | ł | 0 | 0 | 0 | 1 | 2 | | | TOTAL | | 0 | 2 | 17 | 12 | 31 | | 0 | 2 | 15 | 10 | 27 | | 0 | 0 | 2 | 2 | 4 | | | AM BEGIN PEAK HR | 1 | | • | 7:15 AM | | | 1 | 0 | 0 | 8 | 5 | 13 | 1 | | | | | | | | 4:00 PM
4:15 PM | - | 0 | 0 | 1
3 | 0 | 4 | l | 0 | 0 | 2 | 0 | 3 | l | 0 | 0 | 0 | 0 | 0 | | | 4:30 PM | 1 | 0 | 0 | 6 | 0 | 6 | l | 0 | 0 | 5 | 0 | 5 | 1 | 0 | 0 | 1 | 0 | 1 | | 1_ | 4·45 PM | 1 | 0 | 0 | 3 | 2 | 5 | 1 | 0 | 0 | 3 | 2 | 5 | j | 0 | 0 | 0 | 0 | 0 | | Δ | 5:00 PM | 1 | 0 | 0 | 5 | 2 | 7 | 1 | 0 | 0 | 1 | 1 | 2 | | 0 | 0 | 4 | 1 | 5 | | | 5:15 PM
5:30 PM | 1 | 0 | 0 | 2 | 2 | 7 | l | 0 | 0 | 3 | 0 | 5
1 | | 0 | 0 | 1 | 2 | 3 | | | 5:45 PM | 1 | 0 | 0 | 6 | 0 | 6 | 1 | 0 | 0 | 5 | 0 | 5 | j | 0 | 0 | 1 | 0 | 1 | | | TOTAL | | 1 | 0 | 30 | 9 | 40 | | 1 | 0 | 21 | 5 | 27 | | 0 | 0 | 9 | 4 | 13 | | L | PM BEGIN PEAK HR | J | Щ_ | | 4:30 PM | | | j | 0 | 0 | 12 | 5 | 17 | J | | | | | | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W LA TIJERA BOULEVARD | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 29 | 298 | 14 | 1 | 21 | 98 | 62 | 0 | 49 | 350 | 29 | 0 | 26 | 60 | 27 | 0 | 1064 | | 315-330 | 37 | 343 | 27 | 2 | 23 | 83 | 67 | 0 | 33 | 226 | 24 | 0 | 21 | 92 | 23 | 0 | 1001 | | 330-345 | 18 | 325 | 20 | 0 | 23 | 56 | 54 | 0 | 47 | 245 | 26 | 0 | 23 | 80 | 15 | 0 | 932 | | 345-400 | 27 | 356 | 21 | 1 | 17 | 58 | 48 | 0 | 52 | 263 | 28 | 0 | 17 | 90 | 20 | 0 | 998 | | 400-415 | 28 | 362 | 22 | 2 | 21 | 59 | 35 | 0 | 58 | 266 | 37 | 0 | 19 | 83 | 24 | 0 | 1016 | | 415-430 | 38 | 396 | 25 | 4 | 24 | 45 | 34 | 0 | 39 | 221 | 24 | 1 | 20 | 83 | 26 | 0 | 980 | | 430-445 | 44 | 416 | 21 | 3 | 16 | 31 | 47 | 0 | 46 | 301 | 23 | 0 | 26 | 81 | 27 | 0 | 1082 | | 445-500 | 36 | 395 | 15 | 5 | 15 | 69 | 65 | 0 | 55 | 293 | 29 | 0 | 25 | 89 | 27 | 0 | 1118 | | 500-515 | 38 | 400 | 11 | 2 | 17 | 39 | 58 | 0 | 62 | 243 | 37 | 0 | 30 | 91 | 25 | 0 | 1053 | | 515-530 | 0 | 362 | 18 | 5 | 10 | 48 | 40 | 0 | 56 | 318 | 39 | 1 | 23 | 72 | 21 | 0 | 1013 | | 530-545 | 36 | 382 | 25 | 1 | 22 | 60 | 52 | 0 | 52 | 289 | 33 | 0 | 22 | 93 | 31 | 0 | 1098 | | 545-600 | 26 | 397 | 17 | 1 | 14 | 65 | 48 | 0 | 65 | 331 | 31 | 0 | 22 | 89 | 27 | 0 | 1133 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 111 | 1322 | 82 | 4 | 84 | 295 | 231 | 0 | 181 | 1084 | 107 | 0 | 87 | 322 | 85 | 0 | 3995 | | 315-415 | 110 | 1386 | 90 | 5 | 84 | 256 | 204 | 0 | 190 | 1000 | 115 | 0 | 80 | 345 | 82 | 0 | 3947 | | 330-430 | 111 | 1439 | 88 | 7 | 85 | 218 | 171 | 0 | 196 | 995 | 115 | 1 | 79 | 336 | 85 | 0 | 3926 | | 345-445 | 137 | 1530 | 89 | 10 | 78 | 193 | 164 | 0 | 195 | 1051 | 112 | 1 | 82 | 337 | 97 | 0 | 4076 | | 400-500 | 146 | 1569 | 83 | 14 | 76 | 204 | 181 | 0 | 198 | 1081 | 113 | 1 | 90 | 336 | 104 | 0 | 4196 | | 415-515 | 156 | 1607 | 72 | 14 | 72 | 184 | 204 | 0 | 202 | 1058 | 113 | 1 | 101 | 344 | 105 | 0 | 4233 | | 430-530 | 118 | 1573 | 65 | 15 | 58 | 187 | 210 | 0 | 219 | 1155 | 128 | 1 | 104 | 333 | 100 | 0 | 4266 | | 445-545 | 110 | 1539 | 69 | 13 | 64 | 216 | 215 | 0 | 225 | 1143 | 138 | 1 | 100 | 345 | 104 | 0 | 4282 | | 500-600 | 100 | 1541 | 71 | 9 | 63 | 212 | 198 | 0 | 235 | 1181 | 140 | 1 | 97 | 345 | 104 | 0 | 4297 | | PEDESTRIAN | COUNTS | 3 | | | | |---------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 7 | 7 | 14 | 8 | 36 | | 315-330 | 8 | 8 | 14 | 8 | 38 | | 330-345 | 6 | 6 | 9 | 6 | 27 | | 345-400 | 4 | 4 | 12 | 4 | 24 | | 400-415 | 5 | 5 | 15 | 5 | 30 | | 415-430 | 4 | 4 | 14 | 8 | 30 | | 430-445 | 11 | 11 | 17 | 9 | 48 | | 445-500 | 6 | 6 | 13 | 4 | 29 | | 500-515 | 5 | 5 | 17 | 3 | 30 | | 515-530 | 3 | 3 | 13 | 5 | 24 | | 530-545 | 5 | 5 | 11 | 5 | 26 | | 545-600 | 9 | 9 | 11 | 6 | 35 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 25 | 25 | 49 | 26 | 125 | | 315-415 | 23 | 23 | 50 | 23 | 119 | | 330-430 | 19 | 19 | 50 | 23 | 111 | | 345-445 | 24 | 24 | 58 | 26 | 132 | | 400-500 | 26 | 26 | 59 | 26 | 137 | | 415-515 | 26 | 26 | 61 | 24 | 137 | | 430-530 | 25 | 25 | 60 | 21 | 131 | | 445-545 | 19 | 19 | 54 | 17 | 109 | | 500-600 | 22 | 22 | 52 | 19 | 115 | | BICYCLE COUN | ITS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | (| | 315-330 | 1 | 0 | 0 | 0 | 1 | | 330-345 | 0 | 0 | 0 | 1 | 1 | | 345-400 | 0 | 0 | 0 | 0 | (| | 400-415 | 0 | 0 | 0 | 0 | (| | 415-430 | 1 | 0 | 0 | 0 | 1 | | 430-445 | 0 | 1 | 0 | 1 | 2 | | 445-500 | 0 | 0 | 0 | 1 | 1 | | 500-515 | 0 | 0 | 0 | 0 | (| | 515-530 | 0 | 0 | 1 |
2 | 3 | | 530-545 | 1 | 1 | 2 | 0 | 4 | | 545-600 | 0 | 0 | 0 | 0 | (| | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 1 | 0 | 0 | 1 | 2 | | 315-415 | 1 | 0 | 0 | 1 | 2 | | 330-430 | 1 | 0 | 0 | 1 | 2 | | 345-445 | 1 | 1 | 0 | 1 | 3 | | 400-500 | 1 | 1 | 0 | 2 | 4 | | 415-515 | 1 | 1 | 0 | 2 | 4 | | 430-530 | 0 | 1 | 1 | 4 | 6 | | 445-545 | 1 | 1 | 3 | 3 | 8 | | 500-600 | 1 | 1 | 3 | 2 | 7 | | APPROACH SUMMARIES | | | | | | | | | | | | | |--------------------|-------|-------|--|--------|-------|---|-------|-------|--|-------|-------|--| | APPROACE | | | | | | 1 | | | | | | | | | NORTH | APRCH | | EAST A | APRCH | | SOUTH | APRCH | | WEST | APRCH | | | | APRCH | EXIT | | APRCH | EXIT | | APRCH | EXIT | | APRCH | EXIT | | | 300-400 | 1519 | 1257 | | 610 | 585 | | 1372 | 1640 | | 494 | 513 | | | 315-415 | 1591 | 1171 | | 544 | 625 | | 1305 | 1670 | | 507 | 481 | | | 330-430 | 1645 | 1172 | | 474 | 620 | | 1307 | 1690 | | 500 | 444 | | | 345-445 | 1766 | 1236 | | 435 | 621 | | 1359 | 1777 | | 516 | 442 | | | 400-500 | 1812 | 1275 | | 461 | 617 | | 1393 | 1841 | | 530 | 463 | | | 415-515 | 1849 | 1249 | | 460 | 618 | | 1374 | 1913 | | 550 | 453 | | | 430-530 | 1771 | 1328 | | 455 | 617 | | 1503 | 1888 | | 537 | 433 | | | 445-545 | 1731 | 1324 | | 495 | 639 | | 1507 | 1855 | | 549 | 464 | | | 500-600 | 1721 | 1357 | | 473 | 651 | | 1557 | 1837 | | 546 | 452 | | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W WESTCHESTER PARKWAY | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 19 | 329 | 32 | 0 | 29 | 56 | 47 | 0 | 9 | 358 | 41 | 5 | 27 | 76 | 16 | 0 | 1044 | | 315-330 | 14 | 354 | 40 | 0 | 26 | 51 | 37 | 0 | 19 | 305 | 41 | 6 | 30 | 62 | 9 | 0 | 994 | | 330-345 | 10 | 366 | 41 | 1 | 23 | 58 | 57 | 0 | 19 | 274 | 26 | 3 | 17 | 72 | 16 | 0 | 983 | | 345-400 | 11 | 371 | 64 | 1 | 27 | 75 | 45 | 0 | 9 | 289 | 42 | 6 | 28 | 76 | 13 | 0 | 1057 | | 400-415 | 10 | 334 | 53 | 0 | 27 | 56 | 49 | 0 | 8 | 330 | 28 | 9 | 21 | 88 | 12 | 0 | 1025 | | 415-430 | 9 | 423 | 60 | 0 | 32 | 49 | 41 | 0 | 16 | 282 | 35 | 2 | 21 | 65 | 12 | 0 | 1047 | | 430-445 | 19 | 382 | 70 | 1 | 45 | 70 | 44 | 0 | 11 | 318 | 31 | 1 | 17 | 78 | 13 | 0 | 1100 | | 445-500 | 18 | 408 | 55 | 0 | 28 | 66 | 44 | 0 | 14 | 302 | 32 | 6 | 19 | 73 | 11 | 0 | 1076 | | 500-515 | 15 | 414 | 58 | 1 | 36 | 74 | 42 | 0 | 14 | 327 | 40 | 1 | 28 | 78 | 6 | 0 | 1134 | | 515-530 | 9 | 374 | 44 | 1 | 31 | 73 | 44 | 0 | 8 | 344 | 23 | 9 | 27 | 89 | 11 | 0 | 1087 | | 530-545 | 7 | 386 | 61 | 0 | 33 | 82 | 43 | 0 | 16 | 364 | 38 | 2 | 33 | 70 | 17 | 0 | 1152 | | 545-600 | 11 | 419 | 55 | 0 | 30 | 51 | 32 | 0 | 9 | 381 | 39 | 5 | 23 | 77 | 13 | 0 | 1145 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 54 | 1420 | 177 | 2 | 105 | 240 | 186 | 0 | 56 | 1226 | 150 | 20 | 102 | 286 | 54 | 0 | 4078 | | 315-415 | 45 | 1425 | 198 | 2 | 103 | 240 | 188 | 0 | 55 | 1198 | 137 | 24 | 96 | 298 | 50 | 0 | 4059 | | 330-430 | 40 | 1494 | 218 | 2 | 109 | 238 | 192 | 0 | 52 | 1175 | 131 | 20 | 87 | 301 | 53 | 0 | 4112 | | 345-445 | 49 | 1510 | 247 | 2 | 131 | 250 | 179 | 0 | 44 | 1219 | 136 | 18 | 87 | 307 | 50 | 0 | 4229 | | 400-500 | 56 | 1547 | 238 | 1 | 132 | 241 | 178 | 0 | 49 | 1232 | 126 | 18 | 78 | 304 | 48 | 0 | 4248 | | 415-515 | 61 | 1627 | 243 | 2 | 141 | 259 | 171 | 0 | 55 | 1229 | 138 | 10 | 85 | 294 | 42 | 0 | 4357 | | 430-530 | 61 | 1578 | 227 | 3 | 140 | 283 | 174 | 0 | 47 | 1291 | 126 | 17 | 91 | 318 | 41 | 0 | 4397 | | 445-545 | 49 | 1582 | 218 | 2 | 128 | 295 | 173 | 0 | 52 | 1337 | 133 | 18 | 107 | 310 | 45 | 0 | 4449 | | 500-600 | 42 | 1593 | 218 | 2 | 130 | 280 | 161 | 0 | 47 | 1416 | 140 | 17 | 111 | 314 | 47 | 0 | 4518 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 4 | 4 | 9 | 9 | 26 | | 315-330 | 8 | 8 | 4 | 5 | 25 | | 330-345 | 7 | 7 | 3 | 5 | 22 | | 345-400 | 13 | 13 | 4 | 0 | 30 | | 400-415 | 11 | 11 | 20 | 10 | 52 | | 415-430 | 5 | 5 | 11 | 10 | 31 | | 430-445 | 6 | 6 | 8 | 2 | 22 | | 445-500 | 13 | 13 | 6 | 8 | 40 | | 500-515 | 7 | 7 | 6 | 3 | 23 | | 515-530 | 3 | 3 | 10 | 7 | 23 | | 530-545 | 8 | 8 | 1 | 3 | 20 | | 545-600 | 6 | 6 | 3 | 1 | 16 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 32 | 32 | 20 | 19 | 103 | | 315-415 | 39 | 39 | 31 | 20 | 129 | | 330-430 | 36 | 36 | 38 | 25 | 135 | | 345-445 | 35 | 35 | 43 | 22 | 135 | | 400-500 | 35 | 35 | 45 | 30 | 145 | | 415-515 | 31 | 31 | 31 | 23 | 116 | | 430-530 | 29 | 29 | 30 | 20 | 108 | | 445-545 | 31 | 31 | 23 | 21 | 106 | | 500-600 | 24 | 24 | 20 | 14 | 82 | | BICYCLE COU | NTS | | | | | |--------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | C | | 315-330 | 0 | 0 | 0 | 0 | C | | 330-345 | 0 | 0 | 1 | 1 | 2 | | 345-400 | 0 | 0 | 1 | 0 | , | | 400-415 | 0 | 0 | 0 | 1 | | | 415-430 | 1 | 0 | 0 | 1 | 2 | | 430-445 | 0 | 1 | 0 | 0 | , | | 445-500 | 1 | 0 | 1 | 0 | 2 | | 500-515 | 0 | 0 | 0 | 2 | 2 | | 515-530 | 0 | 0 | 0 | 0 | · | | 530-545 | 0 | 0 | 0 | 0 | (| | 545-600 | 2 | 0 | 2 | 2 | (| | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 2 | 1 | ; | | 315-415 | 0 | 0 | 2 | 2 | 4 | | 330-430 | 1 | 0 | 2 | 3 | (| | 345-445 | 1 | 1 | 1 | 2 | ţ | | 400-500 | 2 | 1 | 1 | 2 | (| | 415-515 | 2 | 1 | 1 | 3 | 7 | | 430-530 | 1 | 1 | 1 | 2 | ţ | | 445-545 | 1 | 0 | 1 | 2 | 4 | | 500-600 | 2 | 0 | 2 | 4 | | | APPROACH | SHMMAR | IFS | | | | | | | |------------|--------|-------|------------|------|-------------|------|-------|-------| | ALLIKOAOLI | | APRCH | EAST APRCH | | SOUTH APRCH | | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 1653 | 1387 | 531 | 519 | 1452 | 1728 | 442 | 444 | | 315-415 | 1670 | 1353 | 531 | 551 | 1414 | 1733 | 444 | 422 | | 330-430 | 1754 | 1339 | 539 | 571 | 1378 | 1793 | 441 | 409 | | 345-445 | 1808 | 1402 | 560 | 598 | 1417 | 1794 | 444 | 435 | | 400-500 | 1842 | 1413 | 551 | 591 | 1425 | 1821 | 430 | 423 | | 415-515 | 1933 | 1414 | 571 | 592 | 1432 | 1893 | 421 | 458 | | 430-530 | 1869 | 1475 | 597 | 592 | 1481 | 1860 | 450 | 470 | | 445-545 | 1851 | 1512 | 596 | 580 | 1540 | 1880 | 462 | 477 | | 500-600 | 1855 | 1595 | 571 | 579 | 1620 | 1882 | 472 | 462 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W LINCOLN BOULEVARD | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 3 | 414 | 0 | 0 | 5 | 0 | 0 | 0 | 126 | 331 | 361 | 0 | 364 | 0 | 0 | 0 | 1604 | | 315-330 | 5 | 455 | 0 | 0 | 4 | 0 | 0 | 0 | 139 | 343 | 303 | 0 | 375 | 0 | 0 | 0 | 1624 | | 330-345 | 1 | 412 | 0 | 0 | 6 | 0 | 0 | 0 | 138 | 399 | 275 | 0 | 395 | 0 | 0 | 0 | 1626 | | 345-400 | 5 | 512 | 0 | 0 | 8 | 0 | 0 | 0 | 146 | 332 | 317 | 0 | 389 | 0 | 0 | 0 | 1709 | | 400-415 | 8 | 458 | 0 | 0 | 11 | 0 | 0 | 0 | 145 | 325 | 296 | 0 | 476 | 0 | 0 | 0 | 1719 | | 415-430 | 2 | 407 | 0 | 0 | 6 | 0 | 0 | 0 | 162 | 350 | 261 | 0 | 454 | 0 | 0 | 0 | 1642 | | 430-445 | 5 | 524 | 0 | 0 | 9 | 0 | 0 | 0 | 150 | 393 | 260 | 0 | 415 | 0 | 0 | 0 | 1756 | | 445-500 | 9 | 474 | 0 | 0 | 3 | 0 | 0 | 0 | 124 | 324 | 291 | 1 | 458 | 0 | 0 | 0 | 1684 | | 500-515 | 4 | 478 | 0 | 0 | 3 | 0 | 0 | 0 | 129 | 396 | 307 | 0 | 512 | 0 | 0 | 0 | 1829 | | 515-530 | 9 | 499 | 0 | 0 | 5 | 0 | 0 | 0 | 119 | 390 | 389 | 0 | 460 | 0 | 0 | 0 | 1871 | | 530-545 | 9 | 477 | 0 | 0 | 6 | 0 | 0 | 0 | 117 | 436 | 352 | 1 | 475 | 0 | 0 | 0 | 1873 | | 545-600 | 2 | 485 | 0 | 0 | 3 | 0 | 0 | 0 | 105 | 383 | 372 | 0 | 431 | 0 | 0 | 0 | 1781 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 14 | 1793 | 0 | 0 | 23 | 0 | 0 | 0 | 549 | 1405 | 1256 | 0 | 1523 | 0 | 0 | 0 | 6563 | | 315-415 | 19 | 1837 | 0 | 0 | 29 | 0 | 0 | 0 | 568 | 1399 | 1191 | 0 | 1635 | 0 | 0 | 0 | 6678 | | 330-430 | 16 | 1789 | 0 | 0 | 31 | 0 | 0 | 0 | 591 | 1406 | 1149 | 0 | 1714 | 0 | 0 | 0 | 6696 | | 345-445 | 20 | 1901 | 0 | 0 | 34 | 0 | 0 | 0 | 603 | 1400 | 1134 | 0 | 1734 | 0 | 0 | 0 | 6826 | | 400-500 | 24 | 1863 | 0 | 0 | 29 | 0 | 0 | 0 | 581 | 1392 | 1108 | 1 | 1803 | 0 | 0 | 0 | 6801 | | 415-515 | 20 | 1883 | 0 | 0 | 21 | 0 | 0 | 0 | 565 | 1463 | 1119 | 1 | 1839 | 0 | 0 | 0 | 6911 | | 430-530 | 27 | 1975 | 0 | 0 | 20 | 0 | 0 | 0 | 522 | 1503 | 1247 | 1 | 1845 | 0 | 0 | 0 | 7140 | | 445-545 | 31 | 1928 | 0 | 0 | 17 | 0 | 0 | 0 | 489 | 1546 | 1339 | 2 | 1905 | 0 | 0 | 0 | 7257 | | 500-600 | 24 | 1939 | 0 | 0 | 17 | 0 | 0 | 0 | 470 | 1605 |
1420 | 1 | 1878 | 0 | 0 | 0 | 7354 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 4 | 2 | 6 | | 315-330 | 0 | 0 | 6 | 0 | 6 | | 330-345 | 0 | 0 | 9 | 5 | 14 | | 345-400 | 0 | 0 | 4 | 1 | 5 | | 400-415 | 0 | 0 | 4 | 10 | 14 | | 415-430 | 0 | 0 | 12 | 0 | 12 | | 430-445 | 0 | 0 | 12 | 3 | 15 | | 445-500 | 0 | 0 | 10 | 8 | 18 | | 500-515 | 0 | 0 | 7 | 6 | 13 | | 515-530 | 0 | 0 | 8 | 1 | 9 | | 530-545 | 0 | 0 | 6 | 0 | 6 | | 545-600 | 0 | 0 | 19 | 6 | 25 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 23 | 8 | 31 | | 315-415 | 0 | 0 | 23 | 16 | 39 | | 330-430 | 0 | 0 | 29 | 16 | 45 | | 345-445 | 0 | 0 | 32 | 14 | 46 | | 400-500 | 0 | 0 | 38 | 21 | 59 | | 415-515 | 0 | 0 | 41 | 17 | 58 | | 430-530 | 0 | 0 | 37 | 18 | 55 | | 445-545 | 0 | 0 | 31 | 15 | 46 | | 500-600 | 0 | 0 | 40 | 13 | 53 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 1 | 1 | | 315-330 | 0 | 0 | 0 | 0 | 0 | | 330-345 | 0 | 0 | 0 | 0 | 0 | | 345-400 | 0 | 0 | 0 | 0 | 0 | | 400-415 | 0 | 0 | 0 | 0 | 0 | | 415-430 | 0 | 1 | 0 | 0 | 1 | | 430-445 | 0 | 0 | 1 | 1 | 2 | | 445-500 | 0 | 0 | 0 | 1 | 1 | | 500-515 | 0 | 0 | 1 | 1 | 2 | | 515-530 | 0 | 0 | 0 | 0 | 0 | | 530-545 | 0 | 0 | 0 | 0 | 0 | | 545-600 | 0 | -3 | 0 | 0 | -3 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 0 | 1 | 1 | | 315-415 | 0 | 0 | 0 | 0 | 0 | | 330-430 | 0 | 1 | 0 | 0 | 1 | | 345-445 | 0 | 1 | 1 | 1 | 3 | | 400-500 | 0 | 1 | 1 | 2 | 4 | | 415-515 | 0 | 1 | 2 | 3 | 6 | | 430-530 | 0 | 0 | 2 | 3 | 5 | | 445-545 | 0 | 0 | 1 | 2 | 3 | | 500-600 | 0 | -3 | 1 | 1 | -1 | | APPROACI | H SUMMAR | IES | | | | | | | | | |----------|----------|-------|-------|-------|------------|--|-------------|------|------------|------| | | NORTH | APRCH | APRCH | | EAST APRCH | | SOUTH APRCH | | WEST APRCH | | | | APRCH | EXIT | | APRCH | EXIT | | APRCH | EXIT | APRCH | EXIT | | 300-400 | 1807 | 1428 | | 23 | 549 | | 3210 | 3316 | 1523 | 1270 | | 315-415 | 1856 | 1428 | | 29 | 568 | | 3158 | 3472 | 1635 | 1210 | | 330-430 | 1805 | 1437 | | 31 | 591 | | 3146 | 3503 | 1714 | 1165 | | 345-445 | 1921 | 1434 | | 34 | 603 | | 3137 | 3635 | 1734 | 1154 | | 400-500 | 1887 | 1421 | | 29 | 581 | | 3082 | 3667 | 1803 | 1132 | | 415-515 | 1903 | 1484 | | 21 | 565 | | 3148 | 3723 | 1839 | 1139 | | 430-530 | 2002 | 1523 | | 20 | 522 | | 3273 | 3821 | 1845 | 1274 | | 445-545 | 1959 | 1563 | | 17 | 489 | | 3376 | 3835 | 1905 | 1370 | | 500-600 | 1963 | 1622 | | 17 | 470 | | 3496 | 3818 | 1878 | 1444 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W 96TH BOULEVARD | VEHICLE COU | NTC | | | | | | | | | | | | | | | | | |---------------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | | NIO . | _ | _ | | | _ | | | _ | | _ | | | | | | | | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | | 8 | _ | | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 42 | 479 | 0 | 0 | 128 | 0 | 0 | 0 | 71 | 688 | 0 | 0 | 34 | 0 | 0 | 0 | 1442 | | 315-330 | 63 | 519 | 0 | 0 | 138 | 0 | 0 | 0 | 74 | 673 | 0 | 0 | 16 | 0 | 0 | 0 | 1483 | | 330-345 | 40 | 578 | 0 | 0 | 110 | 0 | 0 | 0 | 89 | 674 | 0 | 0 | 14 | 0 | 0 | 0 | 1505 | | 345-400 | 47 | 578 | 0 | 0 | 120 | 0 | 0 | 0 | 86 | 676 | 0 | 0 | 14 | 0 | 0 | 0 | 1521 | | 400-415 | 40 | 634 | 0 | 0 | 113 | 0 | 0 | 0 | 79 | 630 | 0 | 0 | 16 | 0 | 0 | 0 | 1512 | | 415-430 | 57 | 619 | 0 | 0 | 98 | 0 | 0 | 0 | 85 | 623 | 0 | 0 | 11 | 0 | 0 | 0 | 1493 | | 430-445 | 41 | 668 | 0 | 0 | 121 | 0 | 0 | 0 | 81 | 690 | 0 | 0 | 22 | 0 | 0 | 0 | 1623 | | 445-500 | 44 | 593 | 0 | 0 | 125 | 0 | 0 | 0 | 80 | 659 | 0 | 0 | 14 | 0 | 0 | 0 | 1515 | | 500-515 | 63 | 674 | 0 | 0 | 138 | 0 | 0 | 0 | 73 | 675 | 0 | 0 | 25 | 0 | 0 | 0 | 1648 | | 515-530 | 50 | 667 | 0 | 0 | 108 | 0 | 0 | 0 | 79 | 759 | 0 | 0 | 11 | 0 | 0 | 0 | 1674 | | 530-545 | 48 | 642 | 0 | 0 | 142 | 0 | 0 | 0 | 90 | 789 | 0 | 0 | 16 | 0 | 0 | 0 | 1727 | | 545-600 | 55 | 630 | 0 | 0 | 134 | 0 | 0 | 0 | 85 | 728 | 0 | 0 | 11 | 0 | 0 | 0 | 1643 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 192 | 2154 | 0 | 0 | 496 | 0 | 0 | 0 | 320 | 2711 | 0 | 0 | 78 | 0 | 0 | 0 | 5951 | | 315-415 | 190 | 2309 | 0 | 0 | 481 | 0 | 0 | 0 | 328 | 2653 | 0 | 0 | 60 | 0 | 0 | 0 | 6021 | | 330-430 | 184 | 2409 | 0 | 0 | 441 | 0 | 0 | 0 | 339 | 2603 | 0 | 0 | 55 | 0 | 0 | 0 | 6031 | | 345-445 | 185 | 2499 | 0 | 0 | 452 | 0 | 0 | 0 | 331 | 2619 | 0 | 0 | 63 | 0 | 0 | 0 | 6149 | | 400-500 | 182 | 2514 | 0 | 0 | 457 | 0 | 0 | 0 | 325 | 2602 | 0 | 0 | 63 | 0 | 0 | 0 | 6143 | | 415-515 | 205 | 2554 | 0 | 0 | 482 | 0 | 0 | 0 | 319 | 2647 | 0 | 0 | 72 | 0 | 0 | 0 | 6279 | | 430-530 | 198 | 2602 | 0 | 0 | 492 | 0 | 0 | 0 | 313 | 2783 | 0 | 0 | 72 | 0 | 0 | 0 | 6460 | | 445-545 | 205 | 2576 | 0 | 0 | 513 | 0 | 0 | 0 | 322 | 2882 | 0 | 0 | 66 | 0 | 0 | 0 | 6564 | | 500-600 | 216 | 2613 | 0 | 0 | 522 | 0 | 0 | 0 | 327 | 2951 | 0 | 0 | 63 | 0 | 0 | 0 | 6692 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 8 | 0 | 8 | | 315-330 | 0 | 0 | 6 | 0 | 6 | | 330-345 | 0 | 0 | 6 | 0 | 6 | | 345-400 | 0 | 0 | 4 | 0 | 4 | | 400-415 | 0 | 0 | 31 | 0 | 31 | | 415-430 | 0 | 0 | 8 | 0 | 8 | | 430-445 | 0 | 0 | 7 | 0 | 7 | | 445-500 | 0 | 0 | 10 | 0 | 10 | | 500-515 | 0 | 0 | 1 | 0 | 1 | | 515-530 | 0 | 0 | 7 | 0 | 7 | | 530-545 | 0 | 0 | 8 | 0 | 8 | | 545-600 | 0 | 0 | 10 | 0 | 10 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 24 | 0 | 24 | | 315-415 | 0 | 0 | 47 | 0 | 47 | | 330-430 | 0 | 0 | 49 | 0 | 49 | | 345-445 | 0 | 0 | 50 | 0 | 50 | | 400-500 | 0 | 0 | 56 | 0 | 56 | | 415-515 | 0 | 0 | 26 | 0 | 26 | | 430-530 | 0 | 0 | 25 | 0 | 25 | | 445-545 | 0 | 0 | 26 | 0 | 26 | | 500-600 | 0 | 0 | 26 | 0 | 26 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | 0 | | 315-330 | 0 | 0 | 0 | 1 | 1 | | 330-345 | 0 | 0 | 0 | 0 | 0 | | 345-400 | 0 | 2 | 0 | 0 | 2 | | 400-415 | 0 | 2 | 0 | 1 | 3 | | 415-430 | 0 | 0 | 0 | 2 | 2 | | 430-445 | 0 | 1 | 0 | 1 | 2 | | 445-500 | 0 | 0 | 0 | 1 | 1 | | 500-515 | 0 | 0 | 0 | 1 | 1 | | 515-530 | 0 | 0 | 0 | 0 | 0 | | 530-545 | 0 | 1 | 0 | 0 | 1 | | 545-600 | 0 | 0 | 0 | 1 | 1 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 2 | 0 | 1 | 3 | | 315-415 | 0 | 4 | 0 | 2 | 6 | | 330-430 | 0 | 4 | 0 | 3 | 7 | | 345-445 | 0 | 5 | 0 | 4 | 9 | | 400-500 | 0 | 3 | 0 | 5 | 8 | | 415-515 | 0 | 1 | 0 | 5 | 6 | | 430-530 | 0 | 1 | 0 | 3 | 4 | | 445-545 | 0 | 1 | 0 | 2 | 3 | | 500-600 | 0 | 1 | 0 | 2 | 3 | | APPROACH | SUMMAR | IES | | | | | | | |-----------------|--------|-------|--------|-------|-------|-------|--------|-------| | | NORTH | APRCH | EAST / | APRCH | SOUTH | APRCH | WEST / | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 2346 | 3207 | 496 | 320 | 3031 | 2232 | 78 | 192 | | 315-415 | 2499 | 3134 | 481 | 328 | 2981 | 2369 | 60 | 190 | | 330-430 | 2593 | 3044 | 441 | 339 | 2942 | 2464 | 55 | 184 | | 345-445 | 2684 | 3071 | 452 | 331 | 2950 | 2562 | 63 | 185 | | 400-500 | 2696 | 3059 | 457 | 325 | 2927 | 2577 | 63 | 182 | | 415-515 | 2759 | 3129 | 482 | 319 | 2966 | 2626 | 72 | 205 | | 430-530 | 2800 | 3275 | 492 | 313 | 3096 | 2674 | 72 | 198 | | 445-545 | 2781 | 3395 | 513 | 322 | 3204 | 2642 | 66 | 205 | | 500-600 | 2829 | 3473 | 522 | 327 | 3278 | 2676 | 63 | 216 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S SEPULVEDA BLVD E/W CENTURY BOULEVARD | VEHICLE COU | NTC | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 25 | 502 | 0 | 0 | 81 | 43 | 106 | 0 | 12 | 676 | 0 | 0 | 0 | 0 | 0 | 0 | 1445 | | 315-330 | 21 | 530 | 0 | 0 | 70 | 27 | 130 | 0 | 15 | 648 | 0 | 0 | 0 | 0 | 0 | 0 | 1441 | | 330-345 | 23 | 562 | 0 | 0 | 68 | 32 | 109 | 0 | 11 | 658 | 0 | 0 | 0 | 0 | 0 | 0 | 1463 | | 345-400 | 27 | 577 | 0 | 0 | 75 | 34 | 160 | 0 | 10 | 694 | 0 | 0 | 0 | 0 | 0 | 0 | 1577 | | 400-415 | 16 | 658 | 0 | 0 | 62 | 27 | 133 | 0 | 17 | 634 | 0 | 0 | 0 | 0 | 0 | 0 | 1547 | | 415-430 | 18 | 592 | 0 | 0 | 56 | 35 | 114 | 0 | 8 | 651 | 0 | 0 | 0 | 0 | 0 | 0 | 1474 | | 430-445 | 23 | 643 | 0 | 0 | 63 | 30 | 151 | 0 | 8 | 653 | 0 | 0 | 0 | 0 | 0 | 0 | 1571 | | 445-500 | 21 | 638 | 0 | 0 | 85 | 32 | 142 | 0 | 15 | 684 | 0 | 0 | 0 | 0 | 0 | 0 | 1617 | | 500-515 | 24 | 633 | 0 | 0 | 80 | 26 | 124 | 0 | 12 | 657 | 0 | 0 | 0 | 0 | 0 | 0 | 1556 | | 515-530 | 26 | 674 | 0 | 0 | 85 |
40 | 135 | 0 | 9 | 766 | 0 | 0 | 0 | 0 | 0 | 0 | 1735 | | 530-545 | 27 | 627 | 0 | 0 | 71 | 26 | 147 | 0 | 9 | 781 | 0 | 0 | 0 | 0 | 0 | 0 | 1688 | | 545-600 | 17 | 660 | 0 | 0 | 72 | 25 | 155 | 0 | 9 | 746 | 0 | 0 | 0 | 0 | 0 | 0 | 1684 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 96 | 2171 | 0 | 0 | 294 | 136 | 505 | 0 | 48 | 2676 | 0 | 0 | 0 | 0 | 0 | 0 | 5926 | | 315-415 | 87 | 2327 | 0 | 0 | 275 | 120 | 532 | 0 | 53 | 2634 | 0 | 0 | 0 | 0 | 0 | 0 | 6028 | | 330-430 | 84 | 2389 | 0 | 0 | 261 | 128 | 516 | 0 | 46 | 2637 | 0 | 0 | 0 | 0 | 0 | 0 | 6061 | | 345-445 | 84 | 2470 | 0 | 0 | 256 | 126 | 558 | 0 | 43 | 2632 | 0 | 0 | 0 | 0 | 0 | 0 | 6169 | | 400-500 | 78 | 2531 | 0 | 0 | 266 | 124 | 540 | 0 | 48 | 2622 | 0 | 0 | 0 | 0 | 0 | 0 | 6209 | | 415-515 | 86 | 2506 | 0 | 0 | 284 | 123 | 531 | 0 | 43 | 2645 | 0 | 0 | 0 | 0 | 0 | 0 | 6218 | | 430-530 | 94 | 2588 | 0 | 0 | 313 | 128 | 552 | 0 | 44 | 2760 | 0 | 0 | 0 | 0 | 0 | 0 | 6479 | | 445-545 | 98 | 2572 | 0 | 0 | 321 | 124 | 548 | 0 | 45 | 2888 | 0 | 0 | 0 | 0 | 0 | 0 | 6596 | | 500-600 | 94 | 2594 | 0 | 0 | 308 | 117 | 561 | 0 | 39 | 2950 | 0 | 0 | 0 | 0 | 0 | 0 | 6663 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 24 | 24 | 0 | 0 | 48 | | 315-330 | 29 | 29 | 0 | 0 | 58 | | 330-345 | 14 | 14 | 0 | 0 | 28 | | 345-400 | 37 | 37 | 0 | 0 | 74 | | 400-415 | 24 | 24 | 0 | 0 | 48 | | 415-430 | 24 | 24 | 0 | 0 | 48 | | 430-445 | 24 | 24 | 0 | 0 | 48 | | 445-500 | 20 | 20 | 1 | 0 | 41 | | 500-515 | 15 | 15 | 0 | 0 | 30 | | 515-530 | 28 | 28 | 0 | 0 | 56 | | 530-545 | 14 | 14 | 1 | 0 | 29 | | 545-600 | 29 | 29 | 0 | 0 | 58 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 104 | 104 | 0 | 0 | 208 | | 315-415 | 104 | 104 | 0 | 0 | 208 | | 330-430 | 99 | 99 | 0 | 0 | 198 | | 345-445 | 109 | 109 | 0 | 0 | 218 | | 400-500 | 92 | 92 | 1 | 0 | 185 | | 415-515 | 83 | 83 | 1 | 0 | 167 | | 430-530 | 87 | 87 | 1 | 0 | 175 | | 445-545 | 77 | 77 | 2 | 0 | 156 | | 500-600 | 86 | 86 | 1 | 0 | 173 | | BICYCLE COU | NTS | | | | | |--------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | C | | 315-330 | 0 | 0 | 0 | 0 | | | 330-345 | 0 | 0 | 0 | 0 | (| | 345-400 | 1 | 1 | 0 | 0 | 2 | | 400-415 | 0 | 0 | 0 | 0 | (| | 415-430 | 0 | 0 | 0 | 1 | , | | 430-445 | 3 | 0 | 0 | 0 | 3 | | 445-500 | 2 | 0 | 0 | 0 | 2 | | 500-515 | 1 | 0 | 0 | 1 | 2 | | 515-530 | 0 | 0 | 0 | 1 | , | | 530-545 | 0 | 0 | 0 | 0 | (| | 545-600 | 2 | 0 | 0 | 1 | 3 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 1 | 1 | 0 | 0 | 2 | | 315-415 | 1 | 1 | 0 | 0 | 2 | | 330-430 | 1 | 1 | 0 | 1 | 3 | | 345-445 | 4 | 1 | 0 | 1 | 6 | | 400-500 | 5 | 0 | 0 | 1 | 6 | | 415-515 | 6 | 0 | 0 | 2 | 8 | | 430-530 | 6 | 0 | 0 | 2 | 8 | | 445-545 | 3 | 0 | 0 | 2 | , | | 500-600 | 3 | 0 | 0 | 3 | | | APPROACH | SUMMAR | IES | | | | | | | |----------|--------|-------|------------|------|-------------|------|-------|-------| | | NORTH | APRCH | EAST APRCH | | SOUTH APRCH | | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 2267 | 2970 | 935 | 48 | 2724 | 2676 | 0 | 232 | | 315-415 | 2414 | 2909 | 927 | 53 | 2687 | 2859 | 0 | 207 | | 330-430 | 2473 | 2898 | 905 | 46 | 2683 | 2905 | 0 | 212 | | 345-445 | 2554 | 2888 | 940 | 43 | 2675 | 3028 | 0 | 210 | | 400-500 | 2609 | 2888 | 930 | 48 | 2670 | 3071 | 0 | 202 | | 415-515 | 2592 | 2929 | 938 | 43 | 2688 | 3037 | 0 | 209 | | 430-530 | 2682 | 3073 | 993 | 44 | 2804 | 3140 | 0 | 222 | | 445-545 | 2670 | 3209 | 993 | 45 | 2933 | 3120 | 0 | 222 | | 500-600 | 2688 | 3258 | 986 | 39 | 2989 | 3155 | 0 | 211 | Phone: (626) 564-1944 Fax: (626) 564-0969 info@wiltecusa.com ## INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: THURSDAY MARCH 7, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W WB I-105 RAMPS | VELUOLE COLL | NITO | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | VEHICLE COU | NIS | 1 | 1 | | | | | | | | | | | | | | | | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 0 | 0 | 0 | 0 | 520 | 0 | 0 | 0 | 0 | 359 | 0 | 0 | 0 | 0 | 0 | 0 | 879 | | 315-330 | 0 | 0 | 0 | 0 | 494 | 0 | 0 | 0 | 0 | 371 | 0 | 0 | 0 | 0 | 0 | 0 | 865 | | 330-345 | 0 | 0 | 0 | 0 | 521 | 0 | 0 | 0 | 0 | 360 | 0 | 0 | 0 | 0 | 0 | 0 | 881 | | 345-400 | 0 | 0 | 0 | 0 | 536 | 0 | 0 | 0 | 0 | 377 | 0 | 0 | 0 | 0 | 0 | 0 | 913 | | 400-415 | 0 | 0 | 0 | 0 | 615 | 0 | 0 | 0 | 0 | 400 | 0 | 0 | 0 | 0 | 0 | 0 | 1015 | | 415-430 | 0 | 0 | 0 | 0 | 512 | 0 | 0 | 0 | 0 | 365 | 0 | 0 | 0 | 0 | 0 | 0 | 877 | | 430-445 | 0 | 0 | 0 | 0 | 487 | 0 | 0 | 0 | 0 | 465 | 0 | 0 | 0 | 0 | 0 | 0 | 952 | | 445-500 | 0 | 0 | 0 | 0 | 471 | 0 | 0 | 0 | 0 | 428 | 0 | 0 | 0 | 0 | 0 | 0 | 899 | | 500-515 | 0 | 0 | 0 | 0 | 432 | 0 | 0 | 0 | 0 | 469 | 0 | 0 | 0 | 0 | 0 | 0 | 901 | | 515-530 | 0 | 0 | 0 | 0 | 523 | 0 | 0 | 0 | 0 | 488 | 0 | 0 | 0 | 0 | 0 | 0 | 1011 | | 530-545 | 0 | 0 | 0 | 0 | 453 | 0 | 0 | 0 | 0 | 527 | 0 | 0 | 0 | 0 | 0 | 0 | 980 | | 545-600 | 0 | 0 | 0 | 0 | 434 | 0 | 0 | 0 | 0 | 492 | 0 | 0 | 0 | 0 | 0 | 0 | 926 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 0 | 0 | 0 | 0 | 2071 | 0 | 0 | 0 | 0 | 1467 | 0 | 0 | 0 | 0 | 0 | 0 | 3538 | | 315-415 | 0 | 0 | 0 | 0 | 2166 | 0 | 0 | 0 | 0 | 1508 | 0 | 0 | 0 | 0 | 0 | 0 | 3674 | | 330-430 | 0 | 0 | 0 | 0 | 2184 | 0 | 0 | 0 | 0 | 1502 | 0 | 0 | 0 | 0 | 0 | 0 | 3686 | | 345-445 | 0 | 0 | 0 | 0 | 2150 | 0 | 0 | 0 | 0 | 1607 | 0 | 0 | 0 | 0 | 0 | 0 | 3757 | | 400-500 | 0 | 0 | 0 | 0 | 2085 | 0 | 0 | 0 | 0 | 1658 | 0 | 0 | 0 | 0 | 0 | 0 | 3743 | | 415-515 | 0 | 0 | 0 | 0 | 1902 | 0 | 0 | 0 | 0 | 1727 | 0 | 0 | 0 | 0 | 0 | 0 | 3629 | | 430-530 | 0 | 0 | 0 | 0 | 1913 | 0 | 0 | 0 | 0 | 1850 | 0 | 0 | 0 | 0 | 0 | 0 | 3763 | | 445-545 | 0 | 0 | 0 | 0 | 1879 | 0 | 0 | 0 | 0 | 1912 | 0 | 0 | 0 | 0 | 0 | 0 | 3791 | | 500-600 | 0 | 0 | 0 | 0 | 1842 | 0 | 0 | 0 | 0 | 1976 | 0 | 0 | 0 | 0 | 0 | 0 | 3818 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | 0 | | 315-330 | 0 | 0 | 0 | 0 | 0 | | 330-345 | 0 | 0 | 0 | 0 | 0 | | 345-400 | 0 | 0 | 0 | 0 | 0 | | 400-415 | 0 | 0 | 0 | 0 | 0 | | 415-430 | 0 | 0 | 0 | 0 | 0 | | 430-445 | 0 | 0 | 0 | 0 | 0 | | 445-500 | 0 | 0 | 0 | 0 | 0 | | 500-515 | 0 | 0 | 0 | 0 | 0 | | 515-530 | 0 | 0 | 0 | 0 | 0 | | 530-545 | 0 | 0 | 0 | 0 | 0 | | 545-600 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 0 | 0 | 0 | | 315-415 | 0 | 0 | 0 | 0 | 0 | | 330-430 | 0 | 0 | 0 | 0 | 0 | | 345-445 | 0 | 0 | 0 | 0 | 0 | | 400-500 | 0 | 0 | 0 | 0 | 0 | | 415-515 | 0 | 0 | 0 | 0 | 0 | | 430-530 | 0 | 0 | 0 | 0 | 0 | | 445-545 | 0 | 0 | 0 | 0 | 0 | | 500-600 | 0 | 0 | 0 | 0 | 0 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | 0 | | 315-330 | 0 | 0 | 0 | 0 | 0 | | 330-345 | 0 | 0 | 0 | 0 | 0 | | 345-400 | 0 | 0 | 0 | 0 | 0 | | 400-415 | 0 | 0 | 0 | 0 | 0 | | 415-430 | 0 | 0 | 0 | 0 | 0 | | 430-445 | 0 | 0 | 0 | 0 | 0 | | 445-500 | 0 | 0 | 0 | 0 | 0 | | 500-515 | 0 | 0 | 0 | 0 | 0 | | 515-530 | 0 | 0 | 0 | 0 | 0 | | 530-545 | 0 | 0 | 0 | 0 | 0 | | 545-600 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 0 | 0 | 0 | | 315-415 | 0 | 0 | 0 | 0 | 0 | | 330-430 | 0 | 0 | 0 | 0 | 0 | | 345-445 | 0 | 0 | 0 | 0 | 0 | | 400-500 | 0 | 0 | 0 | 0 | 0 | | 415-515 | 0 | 0 | 0 | 0 | 0 | | 430-530 | 0 | 0 | 0 | 0 | 0 | | 445-545 | 0 | 0 | 0 | 0 | 0 | | 500-600 | 0 | 0 | 0 | 0 | 0 | | APPROACH S | UMMAR | IES | | | | | | | |------------|-------|-------|--------|-------|-------|-------|--------|-------| | | NORTH | APRCH | EAST / | APRCH | SOUTH | APRCH | WEST A | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 0 | 3538 | 2071 | 0 | 1467 | 0 | 0 | 0 | | 315-415 | 0 | 3674 | 2166 | 0 | 1508 | 0 | 0 | 0 | | 330-430 | 0 | 3686 | 2184 | 0 | 1502 | 0 | 0 | 0 | | 345-445 | 0 | 3757 | 2150 | 0 | 1607 | 0 | 0 | 0 | | 400-500 | 0 | 3743 | 2085 | 0 | 1658 | 0 | 0 | 0 | | 415-515 | 0 | 3629 | 1902 | 0 | 1727 | 0 | 0 | 0 | | 430-530 | 0 | 3763 | 1913 | 0 | 1850 | 0 | 0 | 0 | | 445-545 | 0 | 3791 | 1879 | 0 | 1912 | 0 | 0 | 0 | | 500-600 | 0 | 3818 | 1842 | 0 | 1976 | 0 | 0 | 0 | Phone: (626) 564-1944 Fax: (626) 564-0969 info@wiltecusa.com ## INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY MARCH 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S SEPULVEDA BOULEVARD E/W IMPERIAL HIGHWAY | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------
------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 3 | 422 | 102 | 1 | 69 | 54 | 32 | 0 | 197 | 270 | 32 | 1 | 41 | 83 | 30 | 0 | 1337 | | 315-330 | 3 | 475 | 95 | 2 | 55 | 59 | 28 | 1 | 166 | 257 | 15 | 0 | 27 | 75 | 29 | 0 | 1287 | | 330-345 | 5 | 520 | 100 | 0 | 67 | 44 | 16 | 0 | 222 | 299 | 30 | 0 | 29 | 104 | 30 | 0 | 1466 | | 345-400 | 7 | 517 | 105 | 0 | 49 | 54 | 31 | 0 | 164 | 259 | 31 | 1 | 34 | 80 | 40 | 0 | 1372 | | 400-415 | 7 | 488 | 114 | 1 | 79 | 42 | 28 | 0 | 218 | 281 | 31 | 0 | 37 | 106 | 36 | 0 | 1468 | | 415-430 | 3 | 551 | 115 | 1 | 75 | 64 | 32 | 0 | 220 | 307 | 30 | 1 | 27 | 105 | 23 | 1 | 1555 | | 430-445 | 6 | 533 | 129 | 0 | 87 | 63 | 28 | 0 | 229 | 333 | 28 | 0 | 28 | 115 | 30 | 0 | 1609 | | 445-500 | 5 | 540 | 107 | 0 | 80 | 64 | 32 | 1 | 202 | 309 | 36 | 3 | 41 | 105 | 26 | 1 | 1552 | | 500-515 | 6 | 485 | 91 | 0 | 109 | 77 | 36 | 1 | 213 | 342 | 51 | 4 | 32 | 90 | 30 | 1 | 1568 | | 515-530 | 11 | 498 | 107 | 2 | 80 | 78 | 43 | 1 | 157 | 354 | 26 | 1 | 29 | 91 | 40 | 2 | 1520 | | 530-545 | 6 | 532 | 131 | 0 | 118 | 76 | 43 | 0 | 192 | 351 | 39 | 0 | 37 | 82 | 34 | 0 | 1641 | | 545-600 | 8 | 572 | 123 | 0 | 86 | 65 | 29 | 1 | 193 | 388 | 46 | 1 | 33 | 89 | 23 | 0 | 1657 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 18 | 1934 | 402 | 3 | 240 | 211 | 107 | 1 | 749 | 1085 | 108 | 2 | 131 | 342 | 129 | 0 | 5462 | | 315-415 | 22 | 2000 | 414 | 3 | 250 | 199 | 103 | 1 | 770 | 1096 | 107 | 1 | 127 | 365 | 135 | 0 | 5593 | | 330-430 | 22 | 2076 | 434 | 2 | 270 | 204 | 107 | 0 | 824 | 1146 | 122 | 2 | 127 | 395 | 129 | 1 | 5861 | | 345-445 | 23 | 2089 | 463 | 2 | 290 | 223 | 119 | 0 | 831 | 1180 | 120 | 2 | 126 | 406 | 129 | 1 | 6004 | | 400-500 | 21 | 2112 | 465 | 2 | 321 | 233 | 120 | 1 | 869 | 1230 | 125 | 4 | 133 | 431 | 115 | 2 | 6184 | | 415-515 | 20 | 2109 | 442 | 1 | 351 | 268 | 128 | 2 | 864 | 1291 | 145 | 8 | 128 | 415 | 109 | 3 | 6284 | | 430-530 | 28 | 2056 | 434 | 2 | 356 | 282 | 139 | 3 | 801 | 1338 | 141 | 8 | 130 | 401 | 126 | 4 | 6249 | | 445-545 | 28 | 2055 | 436 | 2 | 387 | 295 | 154 | 3 | 764 | 1356 | 152 | 8 | 139 | 368 | 130 | 4 | 6281 | | 500-600 | 31 | 2087 | 452 | 2 | 393 | 296 | 151 | 3 | 755 | 1435 | 162 | 6 | 131 | 352 | 127 | 3 | 6386 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|----------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 2 | 2 | | 315-330 | 0 | 0 | 1 | 4 | 5 | | 330-345 | 0 | 0 | 1 | 3 | 4 | | 345-400 | 1 | 1 | 0 | 1 | <u>3</u> | | 400-415 | 0 | 0 | 2 | 3 | | | 415-430 | 0 | 0 | 0 | 3 | 3 | | 430-445 | 0 | 0 | 2 | 4 | 6 | | 445-500 | 0 | 0 | 0 | 5 | 5 | | 500-515 | 0 | 0 | 1 | 4 | 5 | | 515-530 | 0 | 0 | 0 | 4 | 4 | | 530-545 | 0 | 0 | 0 | 2 | 2 | | 545-600 | 0 | 0 | 1 | 1 | 2 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 1 | 1 | 2 | 10 | 14 | | 315-415 | 1 | 1 | 4 | 11 | 17 | | 330-430 | 1 | 1 | 3 | 10 | 15 | | 345-445 | 1 | 1 | 4 | 11 | 17 | | 400-500 | 0 | 0 | 4 | 15 | 19 | | 415-515 | 0 | 0 | 3 | 16 | 19 | | 430-530 | 0 | 0 | 3 | 17 | 20 | | 445-545 | 0 | 0 | 1 | 15 | 16 | | 500-600 | 0 | 0 | 2 | 11 | 13 | | BICYCLE COUN | TS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | 0 | | 315-330 | 0 | 0 | 1 | 0 | 1 | | 330-345 | 0 | 0 | 0 | 0 | 0 | | 345-400 | 0 | 0 | 0 | 0 | 0 | | 400-415 | 0 | 0 | 1 | 0 | 1 | | 415-430 | 1 | 0 | 0 | 0 | 1 | | 430-445 | 1 | 0 | 1 | 1 | 3 | | 445-500 | 0 | 0 | 1 | 0 | 1 | | 500-515 | 0 | 0 | 0 | 0 | 0 | | 515-530 | 0 | 0 | 0 | 0 | 0 | | 530-545 | 2 | 0 | 0 | 0 | 2 | | 545-600 | 3 | 0 | 1 | 0 | 4 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 1 | 0 | 1 | | 315-415 | 0 | 0 | 2 | 0 | 2 | | 330-430 | 1 | 0 | 1 | 0 | 2 | | 345-445 | 2 | 0 | 2 | 1 | 5 | | 400-500 | 2 | 0 | 3 | 1 | 6 | | 415-515 | 2 | 0 | 2 | 1 | 5 | | 430-530 | 1 | 0 | 2 | 1 | 4 | | 445-545 | 2 | 0 | 1 | 0 | 3 | | 500-600 | 5 | 0 | 1 | 0 | 6 | | APPROACH S | UMMAR | IES | | | | | | | |------------|-------|-------|--------|-------|-------|-------|-------|-------| | | NORTH | APRCH | EAST / | APRCH | SOUTH | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 2357 | 1457 | 559 | 1494 | 1944 | 2174 | 602 | 337 | | 315-415 | 2439 | 1484 | 553 | 1550 | 1974 | 2231 | 627 | 328 | | 330-430 | 2534 | 1547 | 581 | 1653 | 2094 | 2312 | 652 | 349 | | 345-445 | 2577 | 1601 | 632 | 1700 | 2133 | 2336 | 662 | 367 | | 400-500 | 2600 | 1668 | 675 | 1766 | 2228 | 2369 | 681 | 381 | | 415-515 | 2572 | 1752 | 749 | 1723 | 2308 | 2373 | 655 | 436 | | 430-530 | 2520 | 1822 | 780 | 1639 | 2288 | 2333 | 661 | 455 | | 445-545 | 2521 | 1875 | 839 | 1571 | 2280 | 2356 | 641 | 479 | | 500-600 | 2572 | 1957 | 843 | 1562 | 2358 | 2375 | 613 | 492 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: WEDNESDAY FEBRUARY 27, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S JENNY AVENUE E/W WESTCHESTER PARKWAY | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 37 | 0 | 49 | 0 | 29 | 143 | 0 | 0 | 17 | 0 | 4 | 0 | 0 | 139 | 22 | 0 | 440 | | 315-330 | 22 | 0 | 29 | 0 | 34 | 166 | 0 | 0 | 13 | 0 | 4 | 0 | 1 | 146 | 25 | 1 | 441 | | 330-345 | 17 | 0 | 28 | 0 | 25 | 158 | 0 | 0 | 20 | 0 | 4 | 0 | 3 | 152 | 37 | 0 | 444 | | 345-400 | 23 | 0 | 24 | 0 | 26 | 153 | 0 | 0 | 15 | 1 | 5 | 0 | 1 | 147 | 24 | 0 | 419 | | 400-415 | 31 | 0 | 37 | 0 | 27 | 148 | 0 | 0 | 9 | 0 | 6 | 0 | 1 | 154 | 26 | 0 | 439 | | 415-430 | 13 | 0 | 29 | 0 | 35 | 168 | 0 | 0 | 14 | 0 | 6 | 0 | 0 | 166 | 18 | 1 | 450 | | 430-445 | 21 | 0 | 33 | 0 | 28 | 139 | 0 | 1 | 16 | 0 | 2 | 0 | 0 | 179 | 24 | 0 | 443 | | 445-500 | 18 | 0 | 42 | 0 | 22 | 153 | 0 | 0 | 13 | 0 | 8 | 0 | 1 | 176 | 26 | 0 | 459 | | 500-515 | 14 | 0 | 33 | 0 | 15 | 170 | 1 | 0 | 15 | 0 | 6 | 0 | 1 | 171 | 15 | 0 | 441 | | 515-530 | 11 | 0 | 31 | 0 | 12 | 164 | 0 | 1 | 9 | 0 | 6 | 0 | 1 | 176 | 8 | 0 | 419 | | 530-545 | 15 | 0 | 20 | 0 | 13 | 144 | 0 | 0 | 10 | 0 | 4 | 0 | 0 | 176 | 9 | 0 | 391 | | 545-600 | 11 | 0 | 17 | 0 | 13 | 148 | 1 | 0 | 11 | 0 | 1 | 0 | 1 | 177 | 11 | 0 | 391 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 99 | 0 | 130 | 0 | 114 | 620 | 0 | 0 | 65 | 1 | 17 | 0 | 5 | 584 | 108 | 1 | 1744 | | 315-415 | 93 | 0 | 118 | 0 | 112 | 625 | 0 | 0 | 57 | 1 | 19 | 0 | 6 | 599 | 112 | 1 | 1743 | | 330-430 | 84 | 0 | 118 | 0 | 113 | 627 | 0 | 0 | 58 | 1 | 21 | 0 | 5 | 619 | 105 | 1 | 1752 | | 345-445 | 88 | 0 | 123 | 0 | 116 | 608 | 0 | 1 | 54 | 1 | 19 | 0 | 2 | 646 | 92 | 1 | 1751 | | 400-500 | 83 | 0 | 141 | 0 | 112 | 608 | 0 | 1 | 52 | 0 | 22 | 0 | 2 | 675 | 94 | 1 | 1791 | | 415-515 | 66 | 0 | 137 | 0 | 100 | 630 | 1 | 1 | 58 | 0 | 22 | 0 | 2 | 692 | 83 | 1 | 1793 | | 430-530 | 64 | 0 | 139 | 0 | 77 | 626 | 1 | 2 | 53 | 0 | 22 | 0 | 3 | 702 | 73 | 0 | 1762 | | 445-545 | 58 | 0 | 126 | 0 | 62 | 631 | 1 | 1 | 47 | 0 | 24 | 0 | 3 | 699 | 58 | 0 | 1710 | | 500-600 | 51 | 0 | 101 | 0 | 53 | 626 | 2 | 1 | 45 | 0 | 17 | 0 | 3 | 700 | 43 | 0 | 1642 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 3 | 3 | 0 | 4 | 10 | | 315-330 | 6 | 6 | 0 | 2 | 14 | | 330-345 | 3 | 3 | 1 | 0 | 7 | | 345-400 | 1 | 1 | 0 | 2 | 4 | | 400-415 | 17 | 17 | 1 | 10 | 45 | | 415-430 | 4 | 4 | 0 | 3 | 11 | | 430-445 | 0 | 0 | 0 | 4 | 4 | | 445-500 | 4 | 4 | 0 | 1 | 9 | | 500-515 | 3 | 3 | 0 | 4 | 10 | | 515-530 | 3 | 3 | 0 | 4 | 10 | | 530-545 | 2 | 2 | 0 | 3 | 7 | | 545-600 | 1 | 1 | 0 | 5 | 7 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 13 | 13 | 1 | 8 | 35 | | 315-415 | 27 | 27 | 2 | 14 | 70 | | 330-430 | 25 | 25 | 2 | 15 | 67 | | 345-445 | 22 | 22 | 1 | 19 | 64 | | 400-500 | 25 | 25 | 1 | 18 | 69 | | 415-515 | 11 | 11 | 0 | 12 | 34 | | 430-530 | 10 | 10 | 0 | 13 | 33 | | 445-545 | 12 | 12 | 0 | 12 | 36 | | 500-600 | 9 | 9 | 0 | 16 | 34 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 1 | 0 | 1 | 0 | 2 | | 315-330 | 0 | 0 | 0 | 0 | 0 | | 330-345 | 0 | 0 | 2 | 0 | 2 | | 345-400 | 0 | 0 | 0 | 0 | 0 | | 400-415 | 1 | 0 | 4 | 1 | 6 | | 415-430 | 0 | 0 | 0 | 0 | 0 | | 430-445 | 0 | 0 | 1 | 0 | 1 | | 445-500 | 0 | 0 | 0 | 0 | 0 | | 500-515 | 0 | 0 | 1 | 0 | 1 | | 515-530 | 1 | 0 | 0 | 0 | 1 | | 530-545 | 0 | 0 | 2 | 0 | 2 | | 545-600 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 1 | 0 | 3 | 0 | 4 | | 315-415 | 1 | 0 | 6 | 1 | 8 | | 330-430 | 1 | 0 | 6
 1 | 8 | | 345-445 | 1 | 0 | 5 | 1 | 7 | | 400-500 | 1 | 0 | 5 | 1 | 7 | | 415-515 | 0 | 0 | 2 | 0 | 2 | | 430-530 | 1 | 0 | 2 | 0 | 3 | | 445-545 | 1 | 0 | 3 | 0 | 4 | | 500-600 | 1 | 0 | 3 | 0 | 4 | | APPROACI | SUMMAR | IES | | | | | | | | |----------|--------|-------|--------|------------|--|-------------|------|-------|-------| | | NORTH | APRCH | EAST / | EAST APRCH | | SOUTH APRCH | | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | | APRCH | EXIT | APRCH | EXIT | | 300-400 | 229 | 223 | 734 | 779 | | 83 | 5 | 698 | 737 | | 315-415 | 211 | 225 | 737 | 774 | | 77 | 6 | 718 | 738 | | 330-430 | 202 | 219 | 740 | 795 | | 80 | 5 | 730 | 733 | | 345-445 | 211 | 209 | 725 | 824 | | 74 | 2 | 741 | 716 | | 400-500 | 224 | 206 | 721 | 869 | | 74 | 2 | 772 | 714 | | 415-515 | 203 | 183 | 732 | 888 | | 80 | 3 | 778 | 719 | | 430-530 | 203 | 150 | 706 | 896 | | 75 | 4 | 778 | 712 | | 445-545 | 184 | 120 | 695 | 873 | | 71 | 4 | 760 | 713 | | 500-600 | 152 | 96 | 682 | 847 | | 62 | 5 | 746 | 694 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S VICKSBURG AVENUE E/W CENTURY BOULEVARD | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 98 | 0 | 0 | 0 | 11 | 156 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 1 | 279 | | 315-330 | 72 | 0 | 0 | 0 | 20 | 138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 1 | 241 | | 330-345 | 106 | 0 | 0 | 0 | 17 | 178 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 313 | | 345-400 | 84 | 0 | 0 | 0 | 17 | 133 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 243 | | 400-415 | 68 | 0 | 0 | 0 | 27 | 197 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 305 | | 415-430 | 76 | 0 | 0 | 0 | 14 | 166 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 270 | | 430-445 | 75 | 0 | 0 | 0 | 19 | 169 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 276 | | 445-500 | 75 | 0 | 0 | 0 | 21 | 147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 252 | | 500-515 | 57 | 0 | 0 | 0 | 13 | 157 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 1 | 234 | | 515-530 | 70 | 0 | 0 | 1 | 8 | 160 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 0 | 250 | | 530-545 | 71 | 0 | 0 | 0 | 18 | 168 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 266 | | 545-600 | 80 | 0 | 0 | 0 | 18 | 178 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 1 | 287 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 360 | 0 | 0 | 0 | 65 | 605 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44 | 2 | 1076 | | 315-415 | 330 | 0 | 0 | 0 | 81 | 646 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 2 | 1102 | | 330-430 | 334 | 0 | 0 | 0 | 75 | 674 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 47 | 1 | 1131 | | 345-445 | 303 | 0 | 0 | 0 | 77 | 665 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 1 | 1094 | | 400-500 | 294 | 0 | 0 | 0 | 81 | 679 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 1 | 1103 | | 415-515 | 283 | 0 | 0 | 0 | 67 | 639 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 42 | 1 | 1032 | | 430-530 | 277 | 0 | 0 | 1 | 61 | 633 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 39 | 1 | 1012 | | 445-545 | 273 | 0 | 0 | 1 | 60 | 632 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35 | 1 | 1002 | | 500-600 | 278 | 0 | 0 | 1 | 57 | 663 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 2 | 1037 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 9 | 9 | 0 | 0 | 18 | | 315-330 | 16 | 16 | 0 | 0 | 32 | | 330-345 | 12 | 12 | 0 | 0 | 24 | | 345-400 | 32 | 32 | 0 | 0 | 64 | | 400-415 | 14 | 14 | 0 | 0 | 28 | | 415-430 | 15 | 15 | 0 | 0 | 30 | | 430-445 | 13 | 13 | 0 | 0 | 26 | | 445-500 | 11 | 11 | 0 | 0 | 22 | | 500-515 | 21 | 21 | 0 | 0 | 42 | | 515-530 | 24 | 24 | 0 | 0 | 48 | | 530-545 | 27 | 27 | 0 | 0 | 54 | | 545-600 | 11 | 11 | 0 | 0 | 22 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 69 | 69 | 0 | 0 | 138 | | 315-415 | 74 | 74 | 0 | 0 | 148 | | 330-430 | 73 | 73 | 0 | 0 | 146 | | 345-445 | 74 | 74 | 0 | 0 | 148 | | 400-500 | 53 | 53 | 0 | 0 | 106 | | 415-515 | 60 | 60 | 0 | 0 | 120 | | 430-530 | 69 | 69 | 0 | 0 | 138 | | 445-545 | 83 | 83 | 0 | 0 | 166 | | 500-600 | 83 | 83 | 0 | 0 | 166 | | BICYCLE COU | NTS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 1 | 0 | 0 | 0 | , | | 315-330 | 0 | 0 | 0 | 0 | (| | 330-345 | 1 | 0 | 0 | 0 | , | | 345-400 | 0 | 0 | 0 | 0 | · | | 400-415 | 0 | 0 | 0 | 0 | (| | 415-430 | 0 | 0 | 0 | 0 | (| | 430-445 | 0 | 0 | 0 | 0 | (| | 445-500 | 1 | 0 | 0 | 0 | | | 500-515 | 1 | 0 | 0 | 0 | | | 515-530 | 1 | 0 | 0 | 0 | | | 530-545 | 0 | 0 | 0 | 0 | | | 545-600 | 0 | 0 | 0 | 0 | (| | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 2 | 0 | 0 | 0 | | | 315-415 | 1 | 0 | 0 | 0 | | | 330-430 | 1 | 0 | 0 | 0 | | | 345-445 | 0 | 0 | 0 | 0 | | | 400-500 | 1 | 0 | 0 | 0 | | | 415-515 | 2 | 0 | 0 | 0 | 2 | | 430-530 | 3 | 0 | 0 | 0 | , | | 445-545 | 3 | 0 | 0 | 0 | ; | | 500-600 | 2 | 0 | 0 | 0 | | | APPROACH | SUMMAR | IES | | | | | | | |----------|--------|-------|--------|-------|-------|-------|-------|-------| | | NORTH | APRCH | EAST A | APRCH | SOUTH | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 360 | 109 | 670 | 0 | 0 | 0 | 46 | 967 | | 315-415 | 330 | 124 | 727 | 0 | 0 | 0 | 45 | 978 | | 330-430 | 334 | 122 | 749 | 0 | 0 | 0 | 48 | 1009 | | 345-445 | 303 | 125 | 742 | 0 | 0 | 0 | 49 | 969 | | 400-500 | 294 | 129 | 760 | 0 | 0 | 0 | 49 | 974 | | 415-515 | 283 | 109 | 706 | 0 | 0 | 0 | 43 | 923 | | 430-530 | 278 | 101 | 694 | 0 | 0 | 0 | 40 | 911 | | 445-545 | 274 | 96 | 692 | 0 | 0 | 0 | 36 | 906 | | 500-600 | 279 | 94 | 720 | 0 | 0 | 0 | 38 | 943 | CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FEBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S AIRPORT BOULEVARD E/W ARBOR VITAE/ WESTCHESTER | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 32 | 138 | 30 | 0 | 34 | 104 | 56 | 0 | 51 | 146 | 55 | 0 | 38 | 108 | 27 | 0 | 819 | | 315-330 | 34 | 108 | 16 | 0 | 45 | 78 | 45 | 0 | 75 | 161 | 70 | 0 | 38 | 126 | 30 | 0 | 826 | | 330-345 | 40 | 107 | 32 | 0 | 31 | 80 | 49 | 0 | 82 | 201 | 71 | 0 | 38 | 107 | 21 | 0 | 859 | | 345-400 | 34 | 112 | 28 | 0 | 35 | 104 | 41 | 0 | 72 | 170 | 57 | 0 | 42 | 139 | 33 | 0 | 867 | | 400-415 | 28 | 119 | 26 | 0 | 35 | 86 | 41 | 0 | 77 | 177 | 54 | 0 | 36 | 136 | 20 | 0 | 835 | | 415-430 | 28 | 122 | 34 | 1 | 36 | 103 | 53 | 0 | 67 | 153 | 48 | 0 | 44 | 132 | 27 | 0 | 848 | | 430-445 | 38 | 107 | 34 | 0 | 42 | 107 | 49 | 0 | 91 | 191 | 43 | 0 | 37 | 160 | 35 | 0 | 934 | | 445-500 | 22 | 100 | 30 | 0 | 33 | 99 | 54 | 0 | 77 | 194 | 52 | 0 | 50 | 143 | 22 | 0 | 876 | | 500-515 | 26 | 93 | 33 | 0 | 34 | 83 | 42 | 0 | 95 | 196 | 68 | 0 | 50 | 176 | 23 | 0 | 919 | | 515-530 | 24 | 85 | 36 | 0 | 22 | 94 | 36 | 0 | 72 | 141 | 54 | 0 | 36 | 154 | 27 | 0 | 781 | | 530-545 | 27 | 93 | 38 | 1 | 38 | 100 | 40 | 0 | 54 | 159 | 49 | 0 | 35 | 152 | 22 | 0 | 808 | | 545-600 | 25 | 109 | 35 | 0 | 27 | 76 | 45 | 0 | 42 | 170 | 41 | 0 | 49 | 128 | 23 | 0 | 770 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 140 | 465 | 106 | 0 | 145 | 366 | 191 | 0 | 280 | 678 | 253 | 0 | 156 | 480 | 111 | 0 | 3371 | | 315-415 | 136 | 446 | 102 | 0 | 146 | 348 | 176 | 0 | 306 | 709 | 252 | 0 | 154 | 508 | 104 | 0 | 3387 | | 330-430 | 130 | 460 | 120 | 1 | 137 | 373 | 184 | 0 | 298 | 701 | 230 | 0 | 160 | 514 | 101 | 0 | 3409 | | 345-445 | 128 | 460 | 122 | 1 | 148 | 400 | 184 | 0 | 307 | 691 | 202 | 0 | 159 | 567 | 115 | 0 | 3484 | | 400-500 | 116 | 448 | 124 | 1 | 146 | 395 | 197 | 0 | 312 | 715 | 197 | 0 | 167 | 571 | 104 | 0 | 3493 | | 415-515 | 114 | 422 | 131 | 1 | 145 | 392 | 198 | 0 | 330 | 734 | 211 | 0 | 181 | 611 | 107 | 0 | 3577 | | 430-530 | 110 | 385 | 133 | 0 | 131 | 383 | 181 | 0 | 335 | 722 | 217 | 0 | 173 | 633 | 107 | 0 | 3510 | | 445-545 | 99 | 371 | 137 | 1 | 127 | 376 | 172 | 0 | 298 | 690 | 223 | 0 | 171 | 625 | 94 | 0 | 3384 | | 500-600 | 102 | 380 | 142 | 1 | 121 | 353 | 163 | 0 | 263 | 666 | 212 | 0 | 170 | 610 | 95 | 0 | 3278 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 3 | 3 | 3 | 6 | 15 | | 315-330 | 6 | 6 | 4 | 2 | 18 | | 330-345 | 1 | 1 | 5 | 4 | 11 | | 345-400 | 2 | 2 | 4 | 3 | 11 | | 400-415 | 4 | 4 | 5 | 0 | 13 | | 415-430 | 1 | 1 | 0 | 2 | 4 | | 430-445 | 4 | 4 | 4 | 2 | 14 | | 445-500 | 6 | 6 | 2 | 1 | 15 | | 500-515 | -4 | -4 | 1 | 3 | -4 | | 515-530 | 1 | 1 | 13 | 6 | 21 | | 530-545 | 2 | 2 | 6 | 0 | 10 | | 545-600 | 3 | 3 | 2 | 1 | 9 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | |
300-400 | 12 | 12 | 16 | 15 | 55 | | 315-415 | 13 | 13 | 18 | 9 | 53 | | 330-430 | 8 | 8 | 14 | 9 | 39 | | 345-445 | 11 | 11 | 13 | 7 | 42 | | 400-500 | 15 | 15 | 11 | 5 | 46 | | 415-515 | 7 | 7 | 7 | 8 | 29 | | 430-530 | 7 | 7 | 20 | 12 | 46 | | 445-545 | 5 | 5 | 22 | 10 | 42 | | 500-600 | 2 | 2 | 22 | 10 | 36 | | BICYCLE COUN | ITS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 1 | 1 | 2 | | 315-330 | 0 | 0 | 0 | 0 | (| | 330-345 | 1 | 0 | 0 | 0 | 1 | | 345-400 | 0 | 0 | 1 | 0 | | | 400-415 | 0 | 0 | 1 | 2 | 3 | | 415-430 | 1 | 0 | 0 | 0 | 1 | | 430-445 | 1 | 0 | 0 | 2 | 3 | | 445-500 | 1 | 2 | 0 | 1 | 4 | | 500-515 | 1 | 0 | 0 | 0 | , | | 515-530 | 0 | 0 | 0 | 0 | (| | 530-545 | 0 | 0 | 0 | 0 | (| | 545-600 | 0 | 1 | 6 | 2 | 9 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 1 | 0 | 2 | 1 | 4 | | 315-415 | 1 | 0 | 2 | 2 | 5 | | 330-430 | 2 | 0 | 2 | 2 | 6 | | 345-445 | 2 | 0 | 2 | 4 | 8 | | 400-500 | 3 | 2 | 1 | 5 | 11 | | 415-515 | 4 | 2 | 0 | 3 | 9 | | 430-530 | 3 | 2 | 0 | 3 | 8 | | 445-545 | 2 | 2 | 0 | 1 | Ę | | 500-600 | 1 | 1 | 6 | 2 | 10 | | APPROACH | SUMMAR | IES | | | | | | | |-----------------|--------|-------|--------|-------|-------------|------|-------|-------| | | NORTH | APRCH | EAST / | APRCH | SOUTH APRCH | | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 711 | 934 | 702 | 866 | 1211 | 812 | 747 | 759 | | 315-415 | 684 | 959 | 670 | 916 | 1267 | 776 | 766 | 736 | | 330-430 | 711 | 940 | 694 | 932 | 1229 | 804 | 775 | 733 | | 345-445 | 711 | 955 | 732 | 996 | 1200 | 803 | 841 | 730 | | 400-500 | 689 | 966 | 738 | 1007 | 1224 | 812 | 842 | 708 | | 415-515 | 668 | 987 | 735 | 1072 | 1275 | 801 | 899 | 717 | | 430-530 | 628 | 960 | 695 | 1101 | 1274 | 739 | 913 | 710 | | 445-545 | 608 | 912 | 675 | 1060 | 1211 | 714 | 890 | 698 | | 500-600 | 625 | 883 | 637 | 1015 | 1141 | 713 | 875 | 667 | Phone: (626) 564-1944 Fax: (626) 564-0969 info@wiltecusa.com ## INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: TUESDAY FRBRUARY 26, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S AIRPORT BOULEVARD E/W 96TH STREET | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 61 | 152 | 13 | 0 | 19 | 10 | 2 | 0 | 4 | 183 | 18 | 0 | 24 | 31 | 50 | 0 | 567 | | 315-330 | 51 | 136 | 7 | 0 | 23 | 14 | 7 | 0 | 10 | 200 | 12 | 0 | 27 | 13 | 89 | 0 | 589 | | 330-345 | 61 | 125 | 9 | 0 | 22 | 14 | 17 | 0 | 12 | 276 | 20 | 0 | 23 | 7 | 54 | 0 | 640 | | 345-400 | 52 | 144 | 11 | 0 | 30 | 19 | 10 | 0 | 8 | 192 | 15 | 0 | 30 | 24 | 84 | 0 | 619 | | 400-415 | 72 | 133 | 17 | 0 | 17 | 10 | 10 | 0 | 7 | 234 | 10 | 0 | 19 | 17 | 67 | 0 | 613 | | 415-430 | 55 | 152 | 12 | 0 | 18 | 6 | 3 | 0 | 9 | 200 | 18 | 0 | 21 | 16 | 57 | 0 | 567 | | 430-445 | 41 | 138 | 17 | 0 | 20 | 11 | 8 | 0 | 10 | 241 | 24 | 1 | 21 | 12 | 68 | 0 | 612 | | 445-500 | 59 | 144 | 11 | 0 | 43 | 9 | 10 | 0 | 10 | 220 | 19 | 0 | 30 | 14 | 73 | 0 | 642 | | 500-515 | 48 | 121 | 9 | 0 | 28 | 8 | 11 | 0 | 7 | 261 | 15 | 0 | 19 | 12 | 70 | 0 | 609 | | 515-530 | 54 | 108 | 11 | 0 | 27 | 16 | 6 | 0 | 9 | 212 | 12 | 0 | 16 | 14 | 42 | 0 | 527 | | 530-545 | 36 | 127 | 7 | 0 | 24 | 10 | 12 | 0 | 9 | 210 | 14 | 0 | 19 | 14 | 51 | 0 | 533 | | 545-600 | 45 | 168 | 10 | 0 | 23 | 12 | 5 | 0 | 10 | 197 | 13 | 0 | 18 | 10 | 28 | 0 | 539 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 225 | 557 | 40 | 0 | 94 | 57 | 36 | 0 | 34 | 851 | 65 | 0 | 104 | 75 | 277 | 0 | 2415 | | 315-415 | 236 | 538 | 44 | 0 | 92 | 57 | 44 | 0 | 37 | 902 | 57 | 0 | 99 | 61 | 294 | 0 | 2461 | | 330-430 | 240 | 554 | 49 | 0 | 87 | 49 | 40 | 0 | 36 | 902 | 63 | 0 | 93 | 64 | 262 | 0 | 2439 | | 345-445 | 220 | 567 | 57 | 0 | 85 | 46 | 31 | 0 | 34 | 867 | 67 | 1 | 91 | 69 | 276 | 0 | 2411 | | 400-500 | 227 | 567 | 57 | 0 | 98 | 36 | 31 | 0 | 36 | 895 | 71 | 1 | 91 | 59 | 265 | 0 | 2434 | | 415-515 | 203 | 555 | 49 | 0 | 109 | 34 | 32 | 0 | 36 | 922 | 76 | 1 | 91 | 54 | 268 | 0 | 2430 | | 430-530 | 202 | 511 | 48 | 0 | 118 | 44 | 35 | 0 | 36 | 934 | 70 | 1 | 86 | 52 | 253 | 0 | 2390 | | 445-545 | 197 | 500 | 38 | 0 | 122 | 43 | 39 | 0 | 35 | 903 | 60 | 0 | 84 | 54 | 236 | 0 | 2311 | | 500-600 | 183 | 524 | 37 | 0 | 102 | 46 | 34 | 0 | 35 | 880 | 54 | 0 | 72 | 50 | 191 | 0 | 2208 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 16 | 16 | 6 | 9 | 47 | | 315-330 | 10 | 10 | 3 | 2 | 25 | | 330-345 | 3 | 3 | 4 | 3 | 13 | | 345-400 | 6 | 6 | 6 | 3 | 21 | | 400-415 | 43 | 43 | 28 | 25 | 139 | | 415-430 | 4 | 4 | 4 | 3 | 15 | | 430-445 | 6 | 6 | 6 | 2 | 20 | | 445-500 | 2 | 2 | 2 | 3 | 9 | | 500-515 | 2 | 2 | 9 | 1 | 14 | | 515-530 | 7 | 7 | 8 | 7 | 29 | | 530-545 | 3 | 3 | 10 | 8 | 24 | | 545-600 | 5 | 5 | 1 | 3 | 14 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 35 | 35 | 19 | 17 | 106 | | 315-415 | 62 | 62 | 41 | 33 | 198 | | 330-430 | 56 | 56 | 42 | 34 | 188 | | 345-445 | 59 | 59 | 44 | 33 | 195 | | 400-500 | 55 | 55 | 40 | 33 | 183 | | 415-515 | 14 | 14 | 21 | 9 | 58 | | 430-530 | 17 | 17 | 25 | 13 | 72 | | 445-545 | 14 | 14 | 29 | 19 | 76 | | 500-600 | 17 | 17 | 28 | 19 | 81 | | BICYCLE COUN | TS | | | | | |---------------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 0 | 0 | 0 | | 315-330 | 0 | 0 | 0 | 0 | 0 | | 330-345 | 0 | 0 | 0 | 1 | 1 | | 345-400 | 0 | 0 | 0 | 1 | 1 | | 400-415 | 0 | 0 | 0 | 3 | 3 | | 415-430 | 0 | 0 | 0 | 0 | 0 | | 430-445 | 3 | 2 | 0 | 3 | 8 | | 445-500 | 3 | 3 | 0 | 1 | 7 | | 500-515 | 0 | 0 | 0 | 1 | 1 | | 515-530 | 0 | 0 | 0 | 0 | 0 | | 530-545 | 0 | 0 | 2 | 1 | 3 | | 545-600 | 0 | 2 | 0 | 0 | 2 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 0 | 2 | 2 | | 315-415 | 0 | 0 | 0 | 5 | 5 | | 330-430 | 0 | 0 | 0 | 5 | 5 | | 345-445 | 3 | 2 | 0 | 7 | 12 | | 400-500 | 6 | 5 | 0 | 7 | 18 | | 415-515 | 6 | 5 | 0 | 5 | 16 | | 430-530 | 6 | 5 | 0 | 5 | 16 | | 445-545 | 3 | 3 | 2 | 3 | 11 | | 500-600 | 0 | 2 | 2 | 2 | 6 | | APPROACH S | UMMAR | IES | | | | | | | | |------------|-------|-------|------------|------|-------|-------|------------|------|--| | | NORTH | APRCH | EAST APRCH | | SOUTH | APRCH | WEST APRCH | | | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | | 300-400 | 822 | 1222 | 187 | 149 | 950 | 697 | 456 | 347 | | | 315-415 | 818 | 1288 | 193 | 142 | 996 | 681 | 454 | 350 | | | 330-430 | 843 | 1251 | 176 | 149 | 1001 | 687 | 419 | 352 | | | 345-445 | 844 | 1228 | 162 | 160 | 969 | 690 | 436 | 333 | | | 400-500 | 851 | 1258 | 165 | 152 | 1003 | 690 | 415 | 334 | | | 415-515 | 807 | 1299 | 175 | 139 | 1035 | 679 | 413 | 313 | | | 430-530 | 761 | 1305 | 197 | 136 | 1041 | 633 | 391 | 316 | | | 445-545 | 735 | 1261 | 204 | 127 | 998 | 623 | 374 | 300 | | | 500-600 | 744 | 1173 | 182 | 122 | 969 | 630 | 313 | 283 | | Phone: (626) 564-1944 Fax: (626) 564-0969 info@wiltecusa.com # INTERSECTION CAR/PED/BIKE TRAFFIC COUNT RESULTS SUMMARY CLIENT: CDM SMITH PROJECT: LAX AIRFIELD AND TERMINAL MODERNIZATION PROJECT DATE: THURSDAY MARCH 7, 2019 PERIOD: 3:00 PM TO 6:00 PM INTERSECTION: N/S CENTURY BOULEVARD E/W AIRPORT BOULEVARD CITY: LOS ANGELES | VEHICLE COU | NTS | | | | | | | | | | | | | | | | | |---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-------| | 15 MIN COUNTS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-315 | 85 | 11 | 118 | 0 | 142 | 251 | 8 | 8 | 11 | 6 | 5 | 0 | 4 | 307 | 86 | 12 | 1054 | | 315-330 | 68 | 17 | 116 | 0 | 92 | 241 | 3 | 6 | 10 | 11 | 7 | 0 | 8 | 268 | 103 | 7 | 957 | | 330-345 | 90 | 13 | 134 | 0 | 83 | 230 | 10 | 11 | 14 | 16 | 10 | 0 | 7 | 295 | 94 | 8 | 1015 | | 345-400 | 71 | 11 | 127 | 0 | 97 | 236 | 13 | 7 | 16 | 13 | 4 | 0 | 7 | 338 | 113 | 12 | 1065 | | 400-415 | 61 | 13 | 138 | 0 | 122 | 253 | 9 | 7 | 9 | 7 | 5 | 0 | 6 | 363 | 104 | 7 | 1104 | | 415-430 | 67 | 5 | 124 | 0 | 120 | 228 | 13 | 7 | 10 | 12 | 7 | 0 | 12 | 326 | 104 | 13 | 1048 | | 430-445 | 86 | 6 | 153 | 0 | 126 | 266 | 7 | 11 | 6 | 10 | 8 | 0 | 7 | 307 | 92 | 13 | 1098 | | 445-500 | 71 | 8 | 130 | 0 | 91 | 202 | 8 | 11 | 5 | 5 | 6 | 0 | 7 | 306 | 99 | 13 | 962 | | 500-515 | 87 | 12 | 140 | 0 | 75 | 222 | 1 | 5 | 7 | 8 | 2 | 0 | 3 | 311 | 105 | 8 | 986 | | 515-530 | 72 | 7 | 102 | 0 | 82 | 194 | 6 | 5 | 7 | 8 | 5 | 0 | 4 | 320 | 133 | 13 | 958 | | 530-545 | 62 | 11 | 102 | 0 | 72 | 206 | 8 | 4 | 11 | 12 | 4 | 0 | 6 | 358 | 105 | 9 | 970 | | 545-600 | 65 | 5 | 86 | 0 | 74 | 198 | 7 | 2 | 10 | 10 | 3 | 0 | 1 | 343 | 112 | 10 | 926 | | HOUR TOTALS | 1 | 2 | 3 | 3U | 4 | 5 | 6 | 6U | 7 | 8 | 9 | 9U | 10 | 11 | 12 | 12U | | | PERIOD | SBRT | SBTH | SBLT | SBUT | WBRT | WBTH | WBLT | WBUT | NBRT | NBTH | NBLT | NBUT | EBRT | EBTH | EBLT | EBUT | TOTAL | | 300-400 | 314
| 52 | 495 | 0 | 414 | 958 | 34 | 32 | 51 | 46 | 26 | 0 | 26 | 1208 | 396 | 39 | 4091 | | 315-415 | 290 | 54 | 515 | 0 | 394 | 960 | 35 | 31 | 49 | 47 | 26 | 0 | 28 | 1264 | 414 | 34 | 4141 | | 330-430 | 289 | 42 | 523 | 0 | 422 | 947 | 45 | 32 | 49 | 48 | 26 | 0 | 32 | 1322 | 415 | 40 | 4232 | | 345-445 | 285 | 35 | 542 | 0 | 465 | 983 | 42 | 32 | 41 | 42 | 24 | 0 | 32 | 1334 | 413 | 45 | 4315 | | 400-500 | 285 | 32 | 545 | 0 | 459 | 949 | 37 | 36 | 30 | 34 | 26 | 0 | 32 | 1302 | 399 | 46 | 4212 | | 415-515 | 311 | 31 | 547 | 0 | 412 | 918 | 29 | 34 | 28 | 35 | 23 | 0 | 29 | 1250 | 400 | 47 | 4094 | | 430-530 | 316 | 33 | 525 | 0 | 374 | 884 | 22 | 32 | 25 | 31 | 21 | 0 | 21 | 1244 | 429 | 47 | 4004 | | 445-545 | 292 | 38 | 474 | 0 | 320 | 824 | 23 | 25 | 30 | 33 | 17 | 0 | 20 | 1295 | 442 | 43 | 3876 | | 500-600 | 286 | 35 | 430 | 0 | 303 | 820 | 22 | 16 | 35 | 38 | 14 | 0 | 14 | 1332 | 455 | 40 | 3840 | | PEDESTRIAN | COUNTS | 3 | | | | |-------------------|--------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 16 | 16 | 0 | 6 | 38 | | 315-330 | 16 | 16 | 2 | 2 | 36 | | 330-345 | 10 | 10 | 0 | 3 | 23 | | 345-400 | 15 | 15 | 0 | 6 | 36 | | 400-415 | 14 | 14 | 0 | 2 | 30 | | 415-430 | 14 | 14 | 1 | 4 | 33 | | 430-445 | 7 | 7 | 0 | 3 | 17 | | 445-500 | 13 | 13 | 0 | 0 | 26 | | 500-515 | 15 | 15 | 0 | 4 | 34 | | 515-530 | 10 | 10 | 0 | 2 | 22 | | 530-545 | 7 | 7 | 0 | 1 | 15 | | 545-600 | 8 | 8 | 0 | 1 | 17 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 57 | 57 | 2 | 17 | 133 | | 315-415 | 55 | 55 | 2 | 13 | 125 | | 330-430 | 53 | 53 | 1 | 15 | 122 | | 345-445 | 50 | 50 | 1 | 15 | 116 | | 400-500 | 48 | 48 | 1 | 9 | 106 | | 415-515 | 49 | 49 | 1 | 11 | 110 | | 430-530 | 45 | 45 | 0 | 9 | 99 | | 445-545 | 45 | 45 | 0 | 7 | 97 | | 500-600 | 40 | 40 | 0 | 8 | 88 | | BICYCLE COUN | TS | | | | | |---------------|-------|------|-------|------|-------| | 15 MIN COUNTS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-315 | 0 | 0 | 1 | 0 | 1 | | 315-330 | 0 | 0 | 1 | 1 | 2 | | 330-345 | 0 | 0 | 1 | 0 | 1 | | 345-400 | 0 | 0 | 0 | 0 | 0 | | 400-415 | 0 | 0 | 0 | 0 | 0 | | 415-430 | 0 | 0 | 0 | 0 | 0 | | 430-445 | 0 | 0 | 0 | 0 | 0 | | 445-500 | 0 | 0 | 0 | 0 | 0 | | 500-515 | 1 | 0 | 0 | 0 | 1 | | 515-530 | 0 | 0 | 0 | 0 | 0 | | 530-545 | 0 | 0 | 0 | 0 | 0 | | 545-600 | 0 | 0 | 0 | 0 | 0 | | HOUR TOTALS | NORTH | EAST | SOUTH | WEST | TOTAL | | PERIOD | LEG | LEG | LEG | LEG | | | 300-400 | 0 | 0 | 3 | 1 | 4 | | 315-415 | 0 | 0 | 2 | 1 | 3 | | 330-430 | 0 | 0 | 1 | 0 | 1 | | 345-445 | 0 | 0 | 0 | 0 | 0 | | 400-500 | 0 | 0 | 0 | 0 | 0 | | 415-515 | 1 | 0 | 0 | 0 | 1 | | 430-530 | 1 | 0 | 0 | 0 | 1 | | 445-545 | 1 | 0 | 0 | 0 | 1 | | 500-600 | 1 | 0 | 0 | 0 | 1 | | APPROACH S | UMMAR | IES | | | | | | | |------------|-------|-------|--------|-------|-------|-------|-------|-------| | | NORTH | APRCH | EAST A | APRCH | SOUTH | APRCH | WEST | APRCH | | | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | APRCH | EXIT | | 300-400 | 861 | 856 | 1438 | 1786 | 123 | 112 | 1669 | 1337 | | 315-415 | 859 | 855 | 1420 | 1859 | 122 | 117 | 1740 | 1310 | | 330-430 | 854 | 885 | 1446 | 1926 | 123 | 119 | 1809 | 1302 | | 345-445 | 862 | 920 | 1522 | 1949 | 107 | 109 | 1824 | 1337 | | 400-500 | 862 | 892 | 1481 | 1913 | 90 | 101 | 1779 | 1306 | | 415-515 | 889 | 847 | 1393 | 1859 | 86 | 89 | 1726 | 1299 | | 430-530 | 874 | 834 | 1312 | 1826 | 77 | 76 | 1741 | 1268 | | 445-545 | 804 | 795 | 1192 | 1824 | 80 | 81 | 1800 | 1176 | | 500-600 | 751 | 796 | 1161 | 1813 | 87 | 71 | 1841 | 1160 | # INTERSECTION TURNING MOVEMENT COUNTS PREPARED BY: AimTD LLC. tel: 714 253 7888 cs@aimtd.com | | <u>DATE:</u>
Thu, Apr 26, 18 | | | | Inglewood
La Cieneo
I-405 SB | i
ja | | | o cswaii | PROJEC
LOCATI
CONTR | ON #: | IBEC
15
SIGNAL | | | | | | | | |----|---------------------------------|-------------|------------------|-------------|------------------------------------|------------------|-------------|---------|------------|---------------------------|-------------|----------------------|-------------|--------------|----------------|--------|-----------|--------------|-------| | | NOTES: | | | | | | | | | | AM
PM | | A
N | | | | | | | | | | | | | | | | | | | MD
OTHER | ∢ W | s | E► | | | Add U-Tun | ns to Left T | lurns | | | | I NC | ORTHBOU | IND | | UTHBOL | INID | | ASTBOU | ND | OTHER | ESTBOU | ▼ ID | | ļ _. | | TURNS | | | | | | NL | La Cienega | NR | | La Cienega
ST | SR | | 405 SB Ram | | | I-405 SB Ram | | TOTAL | NB | SB | EB | wb I | TTL | | | LANES: | X | 2 | 0 | 2 | 2 | X | X | X | X | X | X | 2 | | 0 | 0 | 0 | 0 | TIL | | | 7:00 AM
7:15 AM | 0 | 269
301 | 13
11 | 82
116 | 93
129 | 0 | 0 | 0 | 0 | 0 | 0 | 14
20 | 472
577 | 0 | 0 | 0 | 0 | 0 | | | 7:30 AM | 1 | 291 | 10 | 128 | 132 | 0 | 0 | 0 | 0 | Ö | Ö | 19 | 581 | 1 | Ö | 0 | 0 | 1 | | | 7:45 AM
8:00 AM | 0 | 248
240 | 16
11 | 121
122 | 167
186 | 0 | 0 | 0 | 0 | 0 | 0 | 27
18 | 579
577 | 0 | 0 | 0 | 0 | 0 | | | 8:15 AM | 0 | 235 | 6 | 107 | 144 | Ö | Ö | ő | Ö | 0 | 0 | 22 | 514 | 0 | 1 | 0 | 0 | 1 | | | 8:30 AM | 0 | 193 | 7 | 107 | 131 | 0 | 0 | 0 | 0 | 0 | 0 | 35 | 473 | 0 | 0 | 0 | 0 | 0 | | Ψ | 8:45 AM
VOLUMES | 2 | 206
1,983 | 9
83 | 62
845 | 1,111 | 0 | 0 | 0 | 0 | 0 | 0 | 18
173 | 424
4,197 | 2 | 1 | 0 | 0 | 3 | | | APPROACH % | 0% | 96% | 4% | 43% | 57% | 0% | 0% | 0% | 0% | 0% | 0% | 100% | 1,137 | | | U | - | | | | APP/DEPART | 2,068 | / | 2,157 | 1,956 | / | 1,113 | 0 | | 927 | 173 | | 0 | 0 | İ | | | | | | | BEGIN PEAK HR
VOLUMES | 1 | 7:15 AM
1,080 | 1
48 | 487 | 614 | 0 | 0 | 0 | 0 | 0 | 0 | 84 | 2,314 | İ | | | | | | | APPROACH % | 0% | 96% | 4% | 44% | 56% | 0% | 0% | 0% | 0% | 0% | 0% | 100% | | İ | | | | | | | PEAK HR FACTOR
APP/DEPART | 1,129 | 0.905 | 1 164 | 1,101 | 0.894 | 615 | 0 | 0.000 | 535 | 84 | 0.778 | 0 | 0.996 | İ | | | | | | - | 4:00 PM | 0 | 144 | 1,164
11 | 89 | 221 | 012 | 0 | 1 6 | 0 | 0 | 0 | 135 | 600 | 0 | 1 | 0 | 0 | 1 | | | 4:15 PM | 0 | 142 | 7 | 88 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 114 | 551 | 0 | 3 | 0 | 0 | 3 | | | 4:30 PM
4:45 PM | 0 | 176
135 | 13
8 | 81
73 | 227
215 | 0 | 0 | 0 | 0 | 0 | 0 | 131
144 | 628
575 | 0 | 1 | 0 | 0 | 1 | | | 5:00 PM | 0 | 165 | 8 | 114 | 268 | 0 | 0 | 0 | 0 | 0 | 0 | 118 | 673 | 0 | 4 | 0 | 0 | 4 | | | 5:15 PM
5:30 PM | 0 | 145
116 | 6
10 | 101
113 | 226
195 | 0 | 0 | 0 | 0 | 0 | 0 | 113
95 | 591
529 | 0 | 2 | 0 | 0 | 2 | | - | | 0 | 99 | 8 | 93 | 220 | 0 | 0 | 0 | 0 | 0 | 0 | 124 | 544 | 0 | 1 | 0 | 0 | 1 | | Σ | VOLUMES | 0 | 1,122 | 71 | 752 | 1,772 | 0 | 0 | 0 | 0 | 0 | 0 | 974 | 4,691 | 0 | 13 | 0 | 0 | 13 | | | APPROACH % APP/DEPART | 0%
1,193 | 94% | 6%
2,109 | 30%
2,524 | 70% | 0%
1,772 | 0%
0 | 0% | 0%
810 | 0%
974 | 0% | 100% | 0 | İ | | | | | | | BEGIN PEAK HR | | 4:30 PM | 1 | | | | | | | | | | | İ | | | | | | | VOLUMES
APPROACH % | 0
0% | 621
95% | 35
5% | 369
28% | 936
72% | 0
0% | 0
0% | 0
0% | 0
0% | 0
0% | 0
0% | 506
100% | 2,467 | İ | | | | | | | PEAK HR FACTOR | | 0.868 | | | 0.854 | | | 0.000 | | | 0.878 | | 0.916 | İ | | | | | | L | APP/DEPART | 656 | | 1,133 | 1,305 | / | 936 | 0 | / | 398 | 506 | / | 0 | 0 | i | | | | | | | | | | | L | a Ciene | ga | | | | | | | | | | | | | | | | | | | ← N | ORTH SI | DE→ | | | | _ | | | | | | | | | | | | | | 1 | | | | 1 | | | | | | | | | | | | | | I-405 SB | Ramps | : WE | ST SIDE | | | | EAST S | IDE | I-405 S | SB Ram | ps | | | | | | | | | | | | | + | l ← s | OUTH SI | DF—→ | + | | | - | | | | | | | | | | | | | | | | a Ciene | | | | | | | | | | | | | | | | | 7 | PED | FSTDTA | N + BIKE | | | '
1 | | PEDECT | DIAN C | ROSSING | 35 | 1 | | ICYCLE | CBUC | STNC | - | | L | |] | N SIDE | | | W SIDE | | | | | | W SIDE | | 1 | NS | SS | ES | | TOTAL | | | 7:00 AM | | 0 | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 1 | 1 | | 0 | 0 | 0 | 0 | 0 | | | 7:15 AM
7:30 AM | 4 | 0 | 0 | 3 | 1 | 4
5 | | 0 | 0 | 3 | 1 | 4
5 | | 0 | 0 | 0 | 0 | 0 | | | 7:45 AM | 1 | 0 | 0 | 1 | 2 | 3 | 1 | 0 | 0 | 1 | 2 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | | Σ | 8:00 AM | 1 | 0 | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | | | 8:15 AM | | 0 | 0 | 2 | 0 | 2 | | 0 | 0 | 2 | 0 | 2 | | 0 | 0 | 0 | 0 | 0 | | | 8:30 AM
8:45 AM | | 0 | 2 | 0
6 | 4 | 2
12 | ł | 0 | 0 | 5 | 3 | 10 | ł | 0 | 0 | 0 | 1 | 2 | | | TOTAL | | 0 | 2 | 17 | 12 | 31 | | 0 | 2 | 15 | 10 | 27 | | 0 | 0 | 2 | 2 | 4 | | | AM BEGIN PEAK HR | 1 | | • | 7:15 AM | | | 1 | 0 | 0 | 8 | 5 | 13 | 1 | | | | | | | | 4:00 PM
4:15 PM | - | 0 | 0 | 1
3 | 0 | 4 | l | 0 | 0 | 2 | 0 | 3 | l | 0 | 0 | 0 | 0 | 0 | | | 4:30 PM | 1 | 0 | 0 | 6 | 0 | 6 | l | 0 | 0 | 5 | 0 | 5 | 1 | 0 | 0 | 1 | 0 | 1 | | 1_ | 4·45 PM | 1 | 0 | 0 | 3 | 2 | 5 | 1 | 0 | 0 | 3 | 2 | 5 | j | 0 | 0 | 0 | 0 | 0 | | Δ | 5:00 PM | 1 | 0 | 0 | 5 | 2 | 7 | 1 | 0 | 0 | 1 | 1 | 2 | | 0 | 0 | 4 | 1 | 5 | | | 5:15 PM
5:30 PM | 1 | 0 | 0 | 2 | 2 | 7 | l | 0 | 0 | 3 | 0 | 5
1 | | 0 | 0 | 1 | 2 | 3 | | | 5:45 PM | 1 | 0 | 0 | 6 | 0 | 6 | 1 | 0 | 0 | 5 | 0 | 5 | j | 0 | 0 | 1 | 0 | 1 | | | TOTAL | | 1 | 0 | 30 | 9 | 40 | | 1 | 0 | 21 | 5 | 27 | | 0 | 0 | 9 | 4 | 13 | | L | PM BEGIN PEAK HR | J | Щ_ | | 4:30 PM | | | j | 0 | 0 | 12 | 5 | 17 | J | | | | | | # Attachment B: Existing 2019 Study Intersection Lane Configurations and Volumes AM(PM) Peak Hour Turning Movement Volumes and Lane Configurations Existing 2019 Conditions # Attachment C: Existing 2019 LOS Worksheets | | ۶ | → | • | • | ← | • | • | † | / | > | ļ | 4 | |------------------------------|-------|-----------|-------|-------|-----------|------|------|----------|------|-------------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR |
NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 1,1 | ^ | 7 | ሻ | ^ | 7 | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Traffic Volume (veh/h) | 200 | 357 | 95 | 84 | 697 | 404 | 105 | 1724 | 69 | 142 | 1148 | 126 | | Future Volume (veh/h) | 200 | 357 | 95 | 84 | 697 | 404 | 105 | 1724 | 69 | 142 | 1148 | 126 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 206 | 368 | 14 | 87 | 719 | 255 | 108 | 1777 | 37 | 146 | 1184 | 38 | | Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 340 | 608 | 271 | 419 | 960 | 428 | 327 | 2058 | 956 | 248 | 2065 | 641 | | Arrive On Green | 0.10 | 0.17 | 0.17 | 0.20 | 0.27 | 0.27 | 0.09 | 0.40 | 0.40 | 0.09 | 0.40 | 0.40 | | Sat Flow, veh/h | 3456 | 3554 | 1585 | 1781 | 3554 | 1585 | 1781 | 5106 | 1585 | 1781 | 5106 | 1585 | | Grp Volume(v), veh/h | 206 | 368 | 14 | 87 | 719 | 255 | 108 | 1777 | 37 | 146 | 1184 | 38 | | Grp Sat Flow(s), veh/h/ln | 1728 | 1777 | 1585 | 1781 | 1777 | 1585 | 1781 | 1702 | 1585 | 1781 | 1702 | 1585 | | Q Serve(g_s), s | 6.9 | 11.5 | 0.7 | 0.4 | 22.2 | 16.8 | 3.9 | 38.2 | 0.3 | 5.4 | 21.6 | 1.8 | | Cycle Q Clear(g_c), s | 6.9 | 11.5 | 0.7 | 0.4 | 22.2 | 16.8 | 3.9 | 38.2 | 0.3 | 5.4 | 21.6 | 1.8 | | Prop In Lane | 1.00 | 11.0 | 1.00 | 1.00 | | 1.00 | 1.00 | 00.2 | 1.00 | 1.00 | 21.0 | 1.00 | | Lane Grp Cap(c), veh/h | 340 | 608 | 271 | 419 | 960 | 428 | 327 | 2058 | 956 | 248 | 2065 | 641 | | V/C Ratio(X) | 0.61 | 0.61 | 0.05 | 0.21 | 0.75 | 0.60 | 0.33 | 0.86 | 0.04 | 0.59 | 0.57 | 0.06 | | Avail Cap(c_a), veh/h | 536 | 1285 | 573 | 419 | 1072 | 478 | 345 | 2058 | 956 | 264 | 2065 | 641 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.75 | 0.75 | 0.75 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 51.9 | 46.0 | 24.3 | 38.5 | 40.1 | 38.1 | 18.8 | 32.8 | 2.8 | 25.6 | 27.7 | 21.8 | | Incr Delay (d2), s/veh | 1.7 | 2.4 | 0.2 | 0.2 | 3.5 | 3.0 | 0.4 | 3.9 | 0.1 | 3.0 | 1.2 | 0.2 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 5.4 | 8.9 | 0.6 | 3.7 | 15.1 | 11.0 | 2.9 | 21.7 | 0.3 | 4.3 | 13.7 | 1.2 | | Unsig. Movement Delay, s/veh | | 0.0 | 0.0 | 0.1 | 10.1 | 11.0 | 2.0 | 21.1 | 0.0 | 1.0 | 10.7 | 1.2 | | LnGrp Delay(d),s/veh | 53.6 | 48.4 | 24.5 | 38.7 | 43.6 | 41.1 | 19.2 | 36.7 | 2.8 | 28.6 | 28.9 | 22.0 | | LnGrp LOS | D | D | C | D | D | D | В | D | A | C | C | C | | Approach Vol, veh/h | | 588 | | | 1061 | | | 1922 | | | 1368 | | | Approach Delay, s/veh | | 49.7 | | | 42.6 | | | 35.1 | | | 28.6 | | | Approach LOS | | 43.1
D | | | 42.0
D | | | D | | | 20.0
C | | | | | | | | | | _ | | | | U | | | Timer - Assigned Phs | 1 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 15.1 | 52.5 | 15.8 | 36.6 | 15.2 | 52.4 | 27.9 | 24.5 | | | | | | Change Period (Y+Rc), s | * 6.3 | 6.3 | * 6.6 | * 6.4 | * 6.3 | 6.3 | 6.4 | 6.2 | | | | | | Max Green Setting (Gmax), s | * 10 | 34.6 | * 16 | * 34 | * 10 | 34.6 | 9.0 | 41.2 | | | | | | Max Q Clear Time (g_c+I1), s | 5.9 | 23.6 | 8.9 | 24.2 | 7.4 | 40.2 | 2.4 | 13.5 | | | | | | Green Ext Time (p_c), s | 0.1 | 5.9 | 0.4 | 6.0 | 0.1 | 0.0 | 0.1 | 4.8 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 36.6 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | | Notos | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | • | → | • | • | — | • | 4 | † | ~ | - | ţ | 4 | |--|-----------|------------|-----------|------------|------------|------------|-----------|-------------|------------|------------|------------|-----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | ሻ | ∱ ∱ | | ሻ | ተተተ | 7 | ሻ | ^ | 7 | | Traffic Volume (veh/h) | 66 | 223 | 102 | 306 | 289 | 58 | 97 | 1698 | 175 | 35 | 1453 | 82 | | Future Volume (veh/h) | 66 | 223 | 102 | 306 | 289 | 58 | 97 | 1698 | 175 | 35 | 1453 | 82 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 0.98 | | 0.96 | 0.98 | | 0.97 | 1.00 | | 0.99 | 1.00 | | 0.99 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 67 | 228 | 48 | 312 | 295 | 38 | 99 | 1733 | 133 | 36 | 1483 | 41 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 319 | 754 | 439 | 385 | 808 | 103 | 290 | 2493 | 889 | 183 | 2288 | 757 | | Arrive On Green | 0.05 | 0.21 | 0.21 | 0.09 | 0.26 | 0.23 | 0.05 | 0.33 | 0.32 | 0.03 | 0.45 | 0.44 | | Sat Flow, veh/h | 1781 | 3554 | 1525 | 1781 | 3156 | 402 | 1781 | 5106 | 1569 | 1781 | 5106 | 1568 | | Grp Volume(v), veh/h | 67 | 228 | 48 | 312 | 165 | 168 | 99 | 1733 | 133 | 36 | 1483 | 41 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1777 | 1525 | 1781 | 1777 | 1781 | 1781 | 1702 | 1569 | 1781 | 1702 | 1568 | | Q Serve(g_s), s | 2.7 | 4.9 | 2.1 | 8.0 | 6.8 | 7.0 | 2.4 | 26.6 | 4.6 | 1.0 | 20.3 | 1.3 | | Cycle Q Clear(g_c), s | 2.7 | 4.9 | 2.1 | 8.0 | 6.8 | 7.0 | 2.4 | 26.6 | 4.6 | 1.0 | 20.3 | 1.3 | | Prop In Lane | 1.00 | 754 | 1.00 | 1.00 | 4== | 0.23 | 1.00 | 0.400 | 1.00 | 1.00 | 0000 | 1.00 | | Lane Grp Cap(c), veh/h | 319 | 754 | 439 | 385 | 455 | 456 | 290 | 2493 | 889 | 183 | 2288 | 757 | | V/C Ratio(X) | 0.21 | 0.30 | 0.11 | 0.81 | 0.36 | 0.37 | 0.34 | 0.70 | 0.15 | 0.20 | 0.65 | 0.05 | | Avail Cap(c_a), veh/h | 397 | 1106 | 590 | 385 | 553 | 554 | 358 | 2493 | 889 | 322 | 2288 | 757 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 0.67 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.41 | 0.41 | 0.41 | 0.76 | 0.76 | 0.76 | | Uniform Delay (d), s/veh | 27.4 | 29.8 | 23.7 | 30.4 | 27.5 | 27.7 | 13.8 | 24.4 | 12.3 | 16.3 | 19.3 | 12.4 | | Incr Delay (d2), s/veh | 0.3 | 0.2 | 0.1 | 12.3 | 0.5
0.0 | 0.5 | 0.3 | 0.7 | 0.1 | 0.4 | 1.1
0.0 | 0.1 | | Initial Q Delay(d3),s/veh | 2.1 | 0.0
3.7 | 1.3 | 0.0
6.8 | 5.1 | 0.0
5.3 | 1.6 | 0.0
14.7 | 0.0
2.8 | 0.0
0.7 | 11.6 | 0.0 | | %ile BackOfQ(95%),veh/ln
Unsig. Movement Delay, s/veh | | 3.1 | 1.3 | 0.0 | 5.1 | ე.ა | 1.0 | 14.7 | 2.0 | 0.7 | 11.0 | 0.0 | | LnGrp Delay(d),s/veh | 27.7 | 30.1 | 23.8 | 42.7 | 27.9 | 28.2 | 14.1 | 25.1 | 12.5 | 16.7 | 20.4 | 12.5 | | LnGrp LOS | 27.7
C | 30.1
C | 23.0
C | 42.7
D | 27.9
C | 20.2
C | 14.1
B | 23.1
C | 12.5
B | В | 20.4
C | 12.5
B | | Approach Vol, veh/h | | 343 | U | U | 645 | | В | 1965 | ь | ь | 1560 | В | | Approach Delay, s/veh | | 28.7 | | | 35.1 | | | 23.7 | | | 20.1 | | | Approach LOS | | 20.7
C | | | 33.1
D | | | 23.7
C | | | 20.1
C | | | Approach LOS | | | | | U | | | | | | C | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 8.1 | 27.0 | 10.6 | 44.3 | 12.0 | 23.1 | 7.0 | 47.9 | | | | | | Change Period (Y+Rc), s | 4.0 | * 6 | * 6 | * 5 | 4.0 | * 6 | 4.0 | * 5 | | | | | | Max Green Setting (Gmax), s | 8.0 | * 26 | * 8 | * 27 | 8.0 | * 26 | 10.0 | * 27 | | | | | | Max Q Clear Time (g_c+l1), s | 4.7 | 9.0 | 4.4 | 22.3 | 10.0 | 6.9 | 3.0 | 28.6 | | | | | | Green Ext Time (p_c), s | 0.0 | 1.6 | 0.1 | 3.5 | 0.0 | 1.4 | 0.0 | 0.0 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 24.5 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | • | → | • | • | ← | • | 1 | † | ~ | / | Ţ | 4 | |---|--------------|--------------|-------------|--------------|-------------|--------------|------|--------------|------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ ∱ | | ሻ | ተ ኈ | | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Traffic Volume (veh/h) | 13 | 192 | 81 | 155 | 638 | 220 | 216 | 1839 | 31 | 108 | 1666 | 39 | | Future Volume (veh/h) | 13 | 192 | 81 | 155 | 638 | 220 | 216 | 1839 | 31 | 108 | 1666 | 39 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 0.99 | | 0.97 | 0.98 | | 0.98 | 1.00 | | 0.99 | 1.00 | | 0.99 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | 4070 | No | 4070 | 4070 | No | 4070 | 4070 | No | 4070 | 4070 | No | 4070 | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 13 | 198 | 27 | 160 | 658 | 189 | 223 | 1896 | 14 | 111 | 1718 | 15 | | Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2
 2 | 2 | 2 | | Cap, veh/h | 139 | 677 | 91 | 409 | 782 | 224 | 317 | 2364 | 851 | 210 | 2178 | 678 | | Arrive On Green | 0.02
1781 | 0.22
3136 | 0.20
421 | 0.09
1781 | 0.29 | 0.28
778 | 0.09 | 0.46
5106 | 0.45 | 0.11
1781 | 0.85 | 0.83 | | Sat Flow, veh/h | | | | | 2709 | | 1781 | | 1575 | | 5106 | 1574 | | Grp Volume(v), veh/h | 13 | 111 | 114 | 160 | 431 | 416 | 223 | 1896 | 14 | 111 | 1718 | 15 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1777 | 1780 | 1781 | 1777 | 1710 | 1781 | 1702 | 1575 | 1781 | 1702 | 1574 | | Q Serve(g_s), s | 0.5 | 4.7 | 4.9 | 6.1 | 20.5 | 20.6 | 6.2 | 28.5 | 0.4 | 3.2 | 13.6 | 0.1 | | Cycle Q Clear(g_c), s | 0.5 | 4.7 | 4.9 | 6.1 | 20.5 | 20.6 | 6.2 | 28.5 | 0.4 | 3.2 | 13.6 | 0.1 | | Prop In Lane | 1.00 | 204 | 0.24 | 1.00 | 540 | 0.45 | 1.00 | 0004 | 1.00 | 1.00 | 0470 | 1.00 | | Lane Grp Cap(c), veh/h | 139 | 384 | 384 | 409 | 513 | 494 | 317 | 2364 | 851 | 210 | 2178 | 678 | | V/C Ratio(X) | 0.09 | 0.29 | 0.30
534 | 0.39 | 0.84 | 0.84 | 0.70 | 0.80 | 0.02 | 0.53 | 0.79 | 0.02 | | Avail Cap(c_a), veh/h | 270
1.00 | 533 | 1.00 | 410 | 533
1.00 | 513 | 352 | 2364 | 851 | 310
2.00 | 2178 | 678 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00
0.25 | 0.25 | 1.00
0.25 | 1.00 | 1.00
1.00 | 1.00 | 0.69 | 2.00
0.69 | 2.00
0.69 | | Upstream Filter(I) Uniform Delay (d), s/veh | 28.7 | 29.5 | 29.7 | 23.5 | 30.1 | 30.3 | 16.2 | 20.6 | 9.6 | 18.3 | 4.8 | 4.2 | | Incr Delay (d2), s/veh | 0.3 | 0.4 | 0.4 | 0.2 | 3.1 | 3.3 | 5.5 | 3.0 | 0.0 | 1.4 | 2.1 | 0.0 | | Initial Q Delay(d3),s/veh | 0.0 | 0.4 | 0.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 0.4 | 3.6 | 3.8 | 3.8 | 11.4 | 11.1 | 4.9 | 16.5 | 0.0 | 2.2 | 4.0 | 0.0 | | Unsig. Movement Delay, s/veh | | 3.0 | 3.0 | 3.0 | 11.4 | 11.1 | 4.3 | 10.5 | 0.2 | ۷.۷ | 4.0 | 0.1 | | LnGrp Delay(d),s/veh | 29.0 | 29.9 | 30.1 | 23.6 | 33.2 | 33.6 | 21.7 | 23.6 | 9.6 | 19.7 | 6.9 | 4.3 | | LnGrp LOS | 23.0
C | 23.5
C | C | C | C | C | C | 20.0
C | J.0 | В | Α | 4.5
A | | Approach Vol, veh/h | | 238 | | | 1007 | | | 2133 | | | 1844 | | | Approach Delay, s/veh | | 29.9 | | | 31.8 | | | 23.3 | | | 7.6 | | | Approach LOS | | 23.3
C | | | C C | | | 23.3
C | | | 7.0
A | | | | | | | | | | | | | | А | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 12.2 | 42.4 | 5.4 | 30.0 | 9.0 | 45.7 | 11.9 | 23.4 | | | | | | Change Period (Y+Rc), s | 4.0 | * 5 | 4.0 | * 5 | 4.0 | * 5 | 4.0 | * 5 | | | | | | Max Green Setting (Gmax), s | 10.0 | * 28 | 8.0 | * 26 | 10.0 | * 28 | 8.0 | * 26 | | | | | | Max Q Clear Time (g_c+I1), s | 8.2 | 15.6 | 2.5 | 22.6 | 5.2 | 30.5 | 8.1 | 6.9 | | | | | | Green Ext Time (p_c), s | 0.1 | 8.8 | 0.0 | 1.7 | 0.1 | 0.0 | 0.0 | 1.1 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 19.7 | | | | | | | | | | | HCM 6th LOS | | | В | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | • | • | 4 | † | ļ | 4 | |------------------------------|------|------|------|-----------|------|------| | Movement | EBL | EBR | NBL | NBT | SBT | SBR | | Lane Configurations | | 1111 | ነነነነ | | 1111 | 7 | | Traffic Volume (veh/h) | 0 | 1587 | 1568 | 0 | 2021 | 5 | | Future Volume (veh/h) | 0 | 1587 | 1568 | 0 | 2021 | 5 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | 1.00 | 1.00 | | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | No | | | No | No | | | Adj Sat Flow, veh/h/ln | 0 | 1870 | 1870 | 0 | 1870 | 1870 | | Adj Flow Rate, veh/h | 0 | 1653 | 1633 | 0 | 2105 | 0 | | Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | Percent Heavy Veh, % | 0 | 2 | 2 | 0 | 2 | 2 | | Cap, veh/h | 0 | 0 | 2108 | 0 | 0 | | | Arrive On Green | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.00 | | Sat Flow, veh/h | 0 | | 6484 | 1633 | 0 | | | Grp Volume(v), veh/h | 0.0 | | 1633 | 28.4 | 0.0 | | | Grp Sat Flow(s), veh/h/ln | 0.0 | | 1621 | 20.4
C | 5.0 | | | Q Serve(g_s), s | | | 20.4 | - 0 | | | | Cycle Q Clear(g_c), s | | | 20.4 | | | | | Prop In Lane | | | 1.00 | | | | | Lane Grp Cap(c), veh/h | | | 2108 | | | | | V/C Ratio(X) | | | 0.77 | | | | | Avail Cap(c_a), veh/h | | | 2824 | | | | | HCM Platoon Ratio | | | 1.00 | | | | | | | | 1.00 | | | | | Upstream Filter(I) | | | 27.4 | | | | | Uniform Delay (d), s/veh | | | | | | | | Incr Delay (d2), s/veh | | | 1.0 | | | | | Initial Q Delay(d3),s/veh | | | 0.0 | | | | | %ile BackOfQ(95%),veh/ln | | | 12.2 | | | | | Unsig. Movement Delay, s/veh | | | 00.4 | | | | | LnGrp Delay(d),s/veh | | | 28.4 | | | | | LnGrp LOS | | | С | | | | | Approach Vol, veh/h | | | | | | | | Approach Delay, s/veh | | | | | | | | Approach LOS | | | | | | | | Timer - Assigned Phs | | | 3 | | | | | Phs Duration (G+Y+Rc), s | | | 35.3 | | | | | Change Period (Y+Rc), s | | | * 6 | | | | | Max Green Setting (Gmax), s | | | * 39 | | | | | Max Q Clear Time (g_c+l1), s | | | 22.4 | | | | | Green Ext Time (p_c), s | | | 6.8 | | | | | | | | 0.0 | | | | | Intersection Summary | | | | | | | | HCM 6th Ctrl Delay | | | 28.4 | | | | | HCM 6th LOS | | | С | | | | | Notes | | | | | | | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 4 ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | Intersection | | | | | | | | | | | | | |------------------------|--------|-------|--------|--------|------|------|---------|------|------|---------|----------|------| | Int Delay, s/veh | 0.2 | | | | | | | | | | | | | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | 1 | | | 7 | | ተተተ | 7 | | ^ | 7 | | Traffic Vol, veh/h | 0 | 0 | 34 | 0 | 0 | 439 | 0 | 2691 | 210 | 0 | 1847 | 105 | | Future Vol, veh/h | 0 | 0 | 34 | 0 | 0 | 439 | 0 | 2691 | 210 | 0 | 1847 | 105 | | Conflicting Peds, #/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | | Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free | | RT Channelized | _ | _ | Stop | - | _ | Free | _ | - | Free | _ | _ | Free | | Storage Length | - | - | 0 | - | _ | 0 | _ | - | 0 | _ | _ | 0 | | Veh in Median Storage | ,# - | 0 | - | - | 0 | _ | - | 0 | - | - | 0 | - | | Grade, % | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | | Peak Hour Factor | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | | Heavy Vehicles, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Mvmt Flow | 0 | 0 | 34 | 0 | 0 | 439 | 0 | 2691 | 210 | 0 | 1847 | 105 | | | | _ | | | | | | | | | | | | Major/Minor | Minor2 | | ı | Minor1 | | N | /lajor1 | | N | //ajor2 | | | | Conflicting Flow All | _ | _ | 924 | _ | - | _ | - | 0 | _ | | _ | 0 | | Stage 1 | _ | _ | - | _ | _ | _ | _ | - | _ | _ | _ | - | | Stage 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Critical Hdwy | _ | _ | 7.14 | - | _ | _ | - | - | _ | _ | - | _ | | Critical Hdwy Stg 1 | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Critical Hdwy Stg 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Follow-up Hdwy | _ | _ | 3.92 | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Pot Cap-1 Maneuver | 0 | 0 | 233 | 0 | 0 | 0 | 0 | _ | 0 | 0 | _ | 0 | | Stage 1 | 0 | 0 | - | 0 | 0 | 0 | 0 | _ | 0 | 0 | _ | 0 | | Stage 2 | 0 | 0 | _ | 0 | 0 | 0 | 0 | _ | 0 | 0 | _ | 0 | | Platoon blocked, % | | | | | | | | _ | | | _ | | | Mov Cap-1 Maneuver | - | - | 233 | - | - | - | - | - | - | - | - | - | | Mov Cap-2 Maneuver | _ | _ | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | | Stage 1 | - | - | - | - | - | - | - | - | - | - | - | - | | Stage 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | | | | | | | | | | | | | | | Approach | EB | | | WB | | | NB | | | SB | | | | HCM Control Delay, s | 23.1 | | | 0 | | | 0 | | | 0 | | | | HCM LOS | С | | | Α | Minor Lane/Major Mvm | t | NBT E | EBLn1V | VBLn1 | SBT | | | | | | | | | Capacity (veh/h) | | - | 233 | - | - | | | | | | | | | HCM Lane V/C Ratio | | - | 0.146 | - | - | | | | | | | | | HCM Control Delay (s) | | - | 23.1 | 0 | - | | | | | | | | | HCM Lane LOS | | - | С | Α | - | | | | | | | | | HCM 95th %tile Q(veh) | | - | 0.5 | - | - | ၨ | → | \rightarrow | • | ← | • | • | † | / | > | ļ | 4 | |------------------------------|-----|----------|---------------|-------|----------|------|------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | र्स | 77 | | 1111 | | | 1111 | 7 | | Traffic Volume (veh/h) | 0 | 0 | 0 | 369 | 210 | 530 | 0 | 3253 | 61 | 0 | 2291 | 86 | | Future Volume (veh/h) | 0 | 0 | 0 | 369 | 210 | 530 | 0 | 3253 | 61 | 0 | 2291 | 86 | | Initial Q (Qb), veh | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | | | | 1.00 | | 0.92 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | | | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | | | | 1870 | 1870 | 1870 | 0 | 1870 | 1870 | 0 | 1870 | 1870 | | Adj Flow Rate, veh/h | | | | 302 | 334 | 552 | 0 | 3389 | 62 | 0 | 2386 | 0 | | Peak Hour Factor | | | | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | Percent Heavy Veh, % | | | | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | | Cap, veh/h | | | | 539 | 566 | 884 | 0 | 3966 | 72 | 0 | 3893 | | | Arrive On Green | | | | 0.10 | 0.10 | 0.10 | 0.00 | 0.61 | 0.61 | 0.00 | 0.61 | 0.00 | | Sat Flow, veh/h | | | | 1781 | 1870 | 2925 | 0 | 6817 | 119 | 0 | 6696 | 1585 | | Grp Volume(v), veh/h | | | | 302 | 334 | 552 | 0 | 2490 | 961 | 0 | 2386 | 0 |
| Grp Sat Flow(s),veh/h/ln | | | | 1781 | 1870 | 1462 | 0 | 1609 | 1849 | 0 | 1609 | 1585 | | Q Serve(g_s), s | | | | 19.4 | 20.5 | 21.7 | 0.0 | 50.5 | 51.3 | 0.0 | 27.9 | 0.0 | | Cycle Q Clear(g_c), s | | | | 19.4 | 20.5 | 21.7 | 0.0 | 50.5 | 51.3 | 0.0 | 27.9 | 0.0 | | Prop In Lane | | | | 1.00 | | 1.00 | 0.00 | | 0.06 | 0.00 | | 1.00 | | Lane Grp Cap(c), veh/h | | | | 539 | 566 | 884 | 0 | 2920 | 1119 | 0 | 3893 | | | V/C Ratio(X) | | | | 0.56 | 0.59 | 0.62 | 0.00 | 0.85 | 0.86 | 0.00 | 0.61 | | | Avail Cap(c_a), veh/h | | | | 585 | 614 | 960 | 0 | 2920 | 1119 | 0 | 3893 | | | HCM Platoon Ratio | | | | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | | | | 0.87 | 0.87 | 0.87 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | | Uniform Delay (d), s/veh | | | | 46.4 | 46.9 | 47.5 | 0.0 | 19.3 | 19.5 | 0.0 | 14.9 | 0.0 | | Incr Delay (d2), s/veh | | | | 0.9 | 1.1 | 1.0 | 0.0 | 2.6 | 6.9 | 0.0 | 0.7 | 0.0 | | Initial Q Delay(d3),s/veh | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | | | | 14.1 | 15.4 | 13.2 | 0.0 | 24.9 | 30.0 | 0.0 | 14.8 | 0.0 | | Unsig. Movement Delay, s/veh | | | | 47.0 | 40.0 | 40.4 | 0.0 | 00.0 | 00.4 | 0.0 | 45.0 | 0.0 | | LnGrp Delay(d),s/veh | | | | 47.3 | 48.0 | 48.4 | 0.0 | 22.0 | 26.4 | 0.0 | 15.6 | 0.0 | | LnGrp LOS | | | | D | D | D | A | C | С | A | В | | | Approach Vol, veh/h | | | | | 1188 | | | 3451 | | | 2386 | Α | | Approach Delay, s/veh | | | | | 48.0 | | | 23.2 | | | 15.6 | | | Approach LOS | | | | | D | | | С | | | В | | | Timer - Assigned Phs | | 2 | | 4 | | 6 | | | | | | | | Phs Duration (G+Y+Rc), s | | 77.6 | | 42.4 | | 77.6 | | | | | | | | Change Period (Y+Rc), s | | * 5 | | * 6.1 | | * 5 | | | | | | | | Max Green Setting (Gmax), s | | * 70 | | * 39 | | * 70 | | | | | | | | Max Q Clear Time (g_c+I1), s | | 29.9 | | 23.7 | | 53.3 | | | | | | | | Green Ext Time (p_c), s | | 28.6 | | 5.0 | | 15.6 | | | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 24.8 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | User approved volume balancing among the lanes for turning movement. * HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | | • | • | † | / | > | ↓ | | | |--------------------------|----------------------------------|-------|----------|----------|-------------|------------------|-----|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | Lane Configurations | | 777 | ተተተ | | | ተተተ | | | | Traffic Volume (vph) | 0 | 2531 | 2177 | 0 | 0 | Ö | | | | Future Volume (vph) | 0 | 2531 | 2177 | 0 | 0 | 0 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | | 4.0 | 4.0 | | | | | | | Lane Util. Factor | | 0.76 | 0.91 | | | | | | | Frt | | 0.85 | 1.00 | | | | | | | Flt Protected | | 1.00 | 1.00 | | | | | | | Satd. Flow (prot) | | 3610 | 5085 | | | | | | | Flt Permitted | | 1.00 | 1.00 | | | | | | | Satd. Flow (perm) | | 3610 | 5085 | | | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | Adj. Flow (vph) | 0 | 2664 | 2292 | 0 | 0 | 0 | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | | Lane Group Flow (vph) | 0 | 2664 | 2292 | 0 | 0 | 0 | | | | Turn Type | | Prot | NA | | | | | | | Protected Phases | | 8 | 2 | | | Free | | | | Permitted Phases | | | | | | | | | | Actuated Green, G (s) | | 50.0 | 33.0 | | | | | | | Effective Green, g (s) | | 49.0 | 33.0 | | | | | | | Actuated g/C Ratio | | 0.54 | 0.37 | | | | | | | Clearance Time (s) | | 3.0 | 4.0 | | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | | | | | | Lane Grp Cap (vph) | | 1965 | 1864 | | | | | | | v/s Ratio Prot | | c0.74 | c0.45 | | | | | | | v/s Ratio Perm | | | | | | | | | | v/c Ratio | | 1.36 | 1.23 | | | | | | | Uniform Delay, d1 | | 20.5 | 28.5 | | | | | | | Progression Factor | | 1.00 | 1.00 | | | | | | | Incremental Delay, d2 | | 163.5 | 108.3 | | | | | | | Delay (s) | | 184.0 | 136.8 | | | | | | | Level of Service | | F | F | | | | | | | Approach Delay (s) | 184.0 | | 136.8 | | | 0.0 | | | | Approach LOS | F | | F | | | Α | | | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 162.2 | H | CM 2000 | Level of Service | F | | | | CM 2000 Volume to Capacity ratio | | 1.30 | | | | | | | ctuated Cycle Length (s) | | | 90.0 | Sı | um of lost | time (s) | 8.0 | | | | tersection Capacity Utilization | | 75.7% | | | of Service | D | | | Analysis Period (min) | nalysis Period (min) | | | | | | | | | a Critical Lana Craun | | | | | | | | | c Critical Lane Group | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |------------------------------|------|----------|------|------|----------|------|------|----------|------|-------------|--|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | ተተተ | 7 | 1,1 | ተተተ | 7 | ሻ | ተተተ | 7 | ሻሻ | ###################################### | | | Traffic Volume (veh/h) | 161 | 283 | 136 | 219 | 241 | 341 | 89 | 1539 | 452 | 494 | 2449 | 14 | | Future Volume (veh/h) | 161 | 283 | 136 | 219 | 241 | 341 | 89 | 1539 | 452 | 494 | 2449 | 14 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.99 | 1.00 | | 0.99 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 175 | 308 | 7 | 238 | 262 | 326 | 97 | 1673 | 303 | 537 | 2662 | 14 | | Peak Hour Factor | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 248 | 820 | 254 | 307 | 908 | 562 | 123 | 2019 | 618 | 613 | 3351 | 18 | | Arrive On Green | 0.07 | 0.16 | 0.16 | 0.09 | 0.18 | 0.18 | 0.07 | 0.40 | 0.40 | 0.18 | 0.50 | 0.50 | | Sat Flow, veh/h | 3456 | 5106 | 1579 | 3456 | 5106 | 1580 | 1781 | 5106 | 1563 | 3456 | 6654 | 35 | | Grp Volume(v), veh/h | 175 | 308 | 7 | 238 | 262 | 326 | 97 | 1673 | 303 | 537 | 1930 | 746 | | Grp Sat Flow(s), veh/h/ln | 1728 | 1702 | 1579 | 1728 | 1702 | 1580 | 1781 | 1702 | 1563 | 1728 | 1609 | 1864 | | Q Serve(g_s), s | 4.5 | 4.8 | 0.3 | 6.1 | 4.0 | 15.1 | 4.8 | 26.5 | 13.1 | 13.6 | 29.8 | 29.8 | | Cycle Q Clear(g_c), s | 4.5 | 4.8 | 0.3 | 6.1 | 4.0 | 15.1 | 4.8 | 26.5 | 13.1 | 13.6 | 29.8 | 29.8 | | Prop In Lane | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | _0.0 | 1.00 | 1.00 | | 0.02 | | Lane Grp Cap(c), veh/h | 248 | 820 | 254 | 307 | 908 | 562 | 123 | 2019 | 618 | 613 | 2430 | 939 | | V/C Ratio(X) | 0.71 | 0.38 | 0.03 | 0.77 | 0.29 | 0.58 | 0.79 | 0.83 | 0.49 | 0.88 | 0.79 | 0.79 | | Avail Cap(c_a), veh/h | 307 | 908 | 281 | 307 | 908 | 562 | 139 | 2019 | 618 | 653 | 2430 | 939 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 40.8 | 33.7 | 31.8 | 40.1 | 32.1 | 23.6 | 41.2 | 24.5 | 20.4 | 36.1 | 18.5 | 18.5 | | Incr Delay (d2), s/veh | 5.5 | 0.3 | 0.0 | 11.7 | 0.2 | 1.5 | 23.1 | 4.1 | 2.8 | 12.3 | 2.8 | 6.9 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 3.6 | 3.5 | 0.2 | 5.4 | 2.9 | 9.3 | 5.1 | 16.1 | 8.5 | 10.8 | 15.9 | 19.4 | | Unsig. Movement Delay, s/veh | | | | | | | | | | | | | | LnGrp Delay(d),s/veh | 46.3 | 34.0 | 31.9 | 51.8 | 32.2 | 25.1 | 64.3 | 28.6 | 23.2 | 48.4 | 21.3 | 25.4 | | LnGrp LOS | D | С | С | D | С | С | E | С | С | D | С | С | | Approach Vol, veh/h | | 490 | | _ | 826 | | | 2073 | | _ | 3213 | | | Approach Delay, s/veh | | 38.4 | | | 35.1 | | | 29.4 | | | 26.8 | | | Approach LOS | | D | | | D | | | C C | | | 20.0
C | | | | 4 | | 2 | 4 | | • | 7 | 0 | | | | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 20.0 | 39.6 | 12.0 | 18.5 | 10.2 | 49.3 | 10.5 | 20.0 | | | | | | Change Period (Y+Rc), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | | Max Green Setting (Gmax), s | 17.0 | 33.0 | 8.0 | 16.0 | 7.0 | 43.0 | 8.0 | 16.0 | | | | | | Max Q Clear Time (g_c+l1), s | 15.6 | 28.5 | 8.1 | 6.8 | 6.8 | 31.8 | 6.5 | 17.1 | | | | | | Green Ext Time (p_c), s | 0.3 | 3.8 | 0.0 | 1.2 | 0.0 | 10.1 | 0.1 | 0.0 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 29.5 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | | Notes | | | | | | | | | | | | | User approved changes to right turn type. | | • | → | • | • | ← | • | • | † | ~ | > | ļ | 4 | |------------------------------|------|----------|------|------|----------|-------|------|-----------|------|-------------|------------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | ሻ | ^ | 7 | 7 | ↑ | 7 | 7 | ∱ ∱ | | | Traffic Volume (veh/h) | 71 | 320 | 7 | 7 | 1250 | 94 | 8 | 0 | 25 | 14 | 0 | 41 | | Future Volume (veh/h) | 71 | 320 | 7 | 7 | 1250 | 94 | 8 | 0 | 25 | 14 | 0 | 41 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.99 | 1.00 | | 1.00 | 0.97 | | 1.00 | 0.97 | | 0.97 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 |
1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 80 | 360 | 7 | 8 | 1404 | 88 | 9 | 0 | 0 | 16 | 0 | 19 | | Peak Hour Factor | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 351 | 2733 | 1211 | 832 | 2733 | 1214 | 216 | 208 | 176 | 233 | 197 | 171 | | Arrive On Green | 0.77 | 0.77 | 0.77 | 1.00 | 1.00 | 1.00 | 0.11 | 0.00 | 0.00 | 0.11 | 0.00 | 0.11 | | Sat Flow, veh/h | 352 | 3554 | 1575 | 1012 | 3554 | 1579 | 1359 | 1870 | 1585 | 1379 | 1777 | 1542 | | Grp Volume(v), veh/h | 80 | 360 | 7 | 8 | 1404 | 88 | 9 | 0 | 0 | 16 | 0 | 19 | | Grp Sat Flow(s), veh/h/ln | 352 | 1777 | 1575 | 1012 | 1777 | 1579 | 1359 | 1870 | 1585 | 1379 | 1777 | 1542 | | Q Serve(g_s), s | 6.1 | 2.3 | 0.1 | 0.0 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 0.9 | 0.0 | 1.0 | | Cycle Q Clear(g_c), s | 6.1 | 2.3 | 0.1 | 2.4 | 0.0 | 0.0 | 1.5 | 0.0 | 0.0 | 0.9 | 0.0 | 1.0 | | Prop In Lane | 1.00 | 2.0 | 1.00 | 1.00 | 0.0 | 1.00 | 1.00 | 0.0 | 1.00 | 1.00 | 0.0 | 1.00 | | Lane Grp Cap(c), veh/h | 351 | 2733 | 1211 | 832 | 2733 | 1214 | 216 | 208 | 176 | 233 | 197 | 171 | | V/C Ratio(X) | 0.23 | 0.13 | 0.01 | 0.01 | 0.51 | 0.07 | 0.04 | 0.00 | 0.00 | 0.07 | 0.00 | 0.11 | | Avail Cap(c_a), veh/h | 351 | 2733 | 1211 | 832 | 2733 | 1214 | 602 | 740 | 627 | 626 | 703 | 610 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.33 | 1.33 | 1.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 0.09 | 0.09 | 0.09 | 1.00 | 0.00 | 0.00 | 1.00 | 0.00 | 1.00 | | Uniform Delay (d), s/veh | 3.1 | 2.7 | 2.4 | 0.0 | 0.0 | 0.0 | 36.7 | 0.0 | 0.0 | 36.0 | 0.0 | 36.0 | | Incr Delay (d2), s/veh | 1.5 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.3 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 0.7 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 | 0.6 | 0.0 | 0.7 | | Unsig. Movement Delay, s/veh | | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | | LnGrp Delay(d),s/veh | 4.6 | 2.8 | 2.4 | 0.0 | 0.1 | 0.0 | 36.8 | 0.0 | 0.0 | 36.1 | 0.0 | 36.3 | | LnGrp LOS | Α. | Α | Α | Α | A | Α | D | Α | Α | D | Α | D | | Approach Vol, veh/h | | 447 | | | 1500 | | | 9 | А | | 35 | | | Approach Delay, s/veh | | 3.1 | | | 0.1 | | | 36.8 | | | 36.2 | | | Approach LOS | | 3.1
A | | | Α | | | 30.0
D | | | 30.2
D | | | | | | | | А | | | | | | D | | | Timer - Assigned Phs | | 2 | | 4 | | 6 | | 8 | | | | | | Phs Duration (G+Y+Rc), s | | 74.3 | | 15.7 | | 74.3 | | 15.7 | | | | | | Change Period (Y+Rc), s | | * 5.1 | | 5.7 | | * 5.1 | | 5.7 | | | | | | Max Green Setting (Gmax), s | | * 44 | | 35.6 | | * 44 | | 35.6 | | | | | | Max Q Clear Time (g_c+l1), s | | 4.4 | | 3.0 | | 8.1 | | 3.5 | | | | | | Green Ext Time (p_c), s | | 14.2 | | 0.1 | | 4.3 | | 0.0 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 1.5 | | | | | | | | | | | HCM 6th LOS | | | Α | | | | | | | | | | | Notos | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ۶ | → | • | • | ← | • | • | † | / | / | Ţ | 4 | |--|-----|----------|------|------|------------|------|------|-----------|----------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | ∱ β | | | ^ | | | | 7 | | Traffic Volume (veh/h) | 0 | 0 | 0 | 0 | 875 | 99 | 0 | 64 | 0 | 0 | 0 | 249 | | Future Volume (veh/h) | 0 | 0 | 0 | 0 | 875 | 99 | 0 | 64 | 0 | 0 | 0 | 249 | | Initial Q (Qb), veh | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | | | | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | | | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | | | _ | No | | _ | No | _ | _ | No | | | Adj Sat Flow, veh/h/ln | | | | 0 | 1870 | 1870 | 0 | 1870 | 0 | 0 | 0 | 1870 | | Adj Flow Rate, veh/h | | | | 0 | 893 | 92 | 0 | 65 | 0 | 0 | 0 | 219 | | Peak Hour Factor | | | | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | | | | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | | Cap, veh/h | | | | 0 | 0 | 0 | 0 | 103 | 0 | 0 | 0 | 0 | | Arrive On Green | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | | Sat Flow, veh/h | | | | | 0 | | 0 | 1870 | 0 | | 0 | | | Grp Volume(v), veh/h | | | | | 0.0 | | 0 | 65 | 0 | | 0.0 | | | Grp Sat Flow(s),veh/h/ln | | | | | | | 0 | 1870 | 0 | | | | | Q Serve(g_s), s | | | | | | | 0.0 | 2.0 | 0.0 | | | | | Cycle Q Clear(g_c), s | | | | | | | 0.0 | 2.0 | 0.0 | | | | | Prop In Lane | | | | | | | 0.00 | 400 | 0.00 | | | | | Lane Grp Cap(c), veh/h | | | | | | | 0 | 103 | 0 | | | | | V/C Ratio(X) | | | | | | | 0.00 | 0.63 | 0.00 | | | | | Avail Cap(c_a), veh/h | | | | | | | 1.00 | 823 | 0 | | | | | HCM Platoon Ratio | | | | | | | 1.00 | 1.00 | 1.00 | | | | | Upstream Filter(I) | | | | | | | 0.00 | 27.7 | 0.00 | | | | | Uniform Delay (d), s/veh
Incr Delay (d2), s/veh | | | | | | | 0.0 | 6.2 | 0.0 | | | | | Initial Q Delay(d3),s/veh | | | | | | | 0.0 | 0.2 | 0.0 | | | | | %ile BackOfQ(95%),veh/ln | | | | | | | 0.0 | 1.9 | 0.0 | | | | | Unsig. Movement Delay, s/veh | | | | | | | 0.0 | 1.3 | 0.0 | | | | | LnGrp Delay(d),s/veh | | | | | | | 0.0 | 33.9 | 0.0 | | | | | LnGrp LOS | | | | | | | Α | 00.5
C | Α | | | | | Approach Vol, veh/h | | | | | | | | 65 | | | | | | Approach Delay, s/veh | | | | | | | | 33.9 | | | | | | Approach LOS | | | | | | | | 00.9
C | Timer - Assigned Phs | | | | | | | | 8 | | | | | | Phs Duration (G+Y+Rc), s | | | | | | | | 7.0 | | | | | | Change Period (Y+Rc), s | | | | | | | | 3.7 | | | | | | Max Green Setting (Gmax), s | | | | | | | | 26.4 | | | | | | Max Q Clear Time (g_c+I1), s | | | | | | | | 4.0 | | | | | | Green Ext Time (p_c), s | | | | | | | | 0.3 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 33.9 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | | | • | → | • | • | ← | • | • | † | ~ | > | ļ | 4 | |------------------------------|-----------|----------|----------|-----------|-----------|-----------|------|-----------|-----------|-------------|-----------|-----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | ň | ħβ | | 7 | ħβ | | ň | ተተተ | 7 | | Traffic Volume (veh/h) | 31 | 172 | 149 | 216 | 934 | 347 | 250 | 938 | 157 | 58 | 689 | 140 | | Future Volume (veh/h) | 31 | 172 | 149 | 216 | 934 | 347 | 250 | 938 | 157 | 58 | 689 | 140 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.98 | 0.99 | | 0.99 | 1.00 | | 0.99 | 1.00 | | 0.99 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 32 | 176 | 70 | 220 | 953 | 311 | 255 | 957 | 146 | 59 | 703 | 95 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 134 | 1038 | 596 | 525 | 921 | 299 | 387 | 1148 | 175 | 239 | 1662 | 561 | | Arrive On Green | 0.03 | 0.29 | 0.29 | 0.09 | 0.35 | 0.35 | 0.18 | 0.74 | 0.74 | 0.04 | 0.33 | 0.33 | | Sat Flow, veh/h | 1781 | 3554 | 1559 | 1781 | 2627 | 853 | 1781 | 3088 | 471 | 1781 | 5106 | 1575 | | Grp Volume(v), veh/h | 32 | 176 | 70 | 220 | 643 | 621 | 255 | 550 | 553 | 59 | 703 | 95 | | Grp Sat Flow(s), veh/h/ln | 1781 | 1777 | 1559 | 1781 | 1777 | 1703 | 1781 | 1777 | 1782 | 1781 | 1702 | 1575 | | Q Serve(g_s), s | 1.1 | 3.3 | 2.6 | 7.6 | 31.5 | 31.5 | 8.0 | 18.8 | 18.9 | 1.9 | 9.7 | 3.7 | | Cycle Q Clear(g_c), s | 1.1 | 3.3 | 2.6 | 7.6 | 31.5 | 31.5 | 8.0 | 18.8 | 18.9 | 1.9 | 9.7 | 3.7 | | Prop In Lane | 1.00 | 0.0 | 1.00 | 1.00 | 01.0 | 0.50 | 1.00 | 10.0 | 0.26 | 1.00 | 0.7 | 1.00 | | Lane Grp Cap(c), veh/h | 134 | 1038 | 596 | 525 | 623 | 597 | 387 | 660 | 662 | 239 | 1662 | 561 | | V/C Ratio(X) | 0.24 | 0.17 | 0.12 | 0.42 | 1.03 | 1.04 | 0.66 | 0.83 | 0.83 | 0.25 | 0.42 | 0.17 | | Avail Cap(c_a), veh/h | 238 | 1038 | 596 | 525 | 623 | 597 | 387 | 660 | 662 | 321 | 1662 | 561 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.88 | 0.88 | 0.88 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 24.9 | 23.7 | 18.0 | 18.5 | 29.2 | 29.2 | 17.5 | 9.7 | 9.7 | 19.9 | 23.7 | 19.9 | | Incr Delay (d2), s/veh | 0.9 | 0.4 | 0.4 | 0.5 | 44.6 | 47.8 | 3.6 | 10.5 | 10.5 | 0.5 | 0.8 | 0.7 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 0.9 | 2.5 | 1.7 | 5.5 | 28.3 | 28.1 | 5.9 | 8.7 | 8.7 | 1.5 | 6.9 | 2.5 | | Unsig. Movement Delay, s/veh | | 2.0 | 1.7 | 5.5 | 20.0 | 20.1 | 0.0 | 0.7 | 0.1 | 1.0 | 0.5 | 2.0 | | LnGrp Delay(d),s/veh | 25.8 | 24.1 | 18.4 | 19.0 | 73.8 | 77.0 | 21.1 | 20.2 | 20.2 | 20.5 | 24.5 | 20.5 | | LnGrp LOS | 23.0
C | C C | В | 19.0
B | 73.0
F | 77.0
F | C C | 20.2
C | 20.2
C | 20.5
C | 24.5
C | 20.5
C | | | | | <u> </u> | <u> </u> | | · | | | | | | | | Approach Vol, veh/h | | 278 | | | 1484 | | | 1358 | | | 857 | | | Approach Delay, s/veh | | 22.8 | | | 67.0 | | | 20.4 | | | 23.8 | | | Approach LOS | | С | | | Е | | | С | | | С | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s |
12.0 | 34.3 | 6.8 | 36.9 | 7.9 | 38.4 | 12.0 | 31.7 | | | | | | Change Period (Y+Rc), s | 4.0 | * 5 | 4.0 | * 5.4 | 4.0 | * 5 | 4.0 | * 5.4 | | | | | | Max Green Setting (Gmax), s | 8.0 | * 29 | 8.0 | * 26 | 8.0 | * 29 | 8.0 | * 26 | | | | | | Max Q Clear Time (g_c+I1), s | 10.0 | 11.7 | 3.1 | 33.5 | 3.9 | 20.9 | 9.6 | 5.3 | | | | | | Green Ext Time (p_c), s | 0.0 | 4.7 | 0.0 | 0.0 | 0.0 | 4.4 | 0.0 | 1.2 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 38.7 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | | Notos | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ۶ | → | • | • | ← | • | 4 | † | ~ | / | ļ | 4 | |--|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|------|----------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 1,4 | • | 7 | ሻ | • | 7 | ሻ | 44 | 7 | 7 | ተተተ | 7 | | Traffic Volume (veh/h) | 79 | 49 | 48 | 30 | 49 | 200 | 95 | 1037 | 38 | 69 | 608 | 386 | | Future Volume (veh/h) | 79 | 49 | 48 | 30 | 49 | 200 | 95 | 1037 | 38 | 69 | 608 | 386 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.98 | 0.96 | | 0.95 | 0.99 | | 0.98 | 0.99 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | 10-0 | No | 10-0 | 40-0 | No | 10-0 | 10-0 | No | 10-0 | 10-0 | No | 40-0 | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 81 | 51 | 22 | 31 | 51 | 17 | 98 | 1069 | 24 | 71 | 627 | 0 | | Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 361 | 463 | 585 | 227 | 184 | 174 | 663 | 2247 | 1005 | 333 | 2444 | 0.00 | | Arrive On Green | 0.10 | 0.25 | 0.27 | 0.12 | 0.10 | 0.12 | 0.15 | 0.84 | 0.86 | 0.99 | 0.96 | 0.00 | | Sat Flow, veh/h | 3456 | 1870 | 1553 | 1271 | 1870 | 1511 | 1781 | 3554 | 1553 | 513 | 5106 | 1585 | | Grp Volume(v), veh/h | 81 | 51 | 22 | 31 | 51 | 17 | 98 | 1069 | 24 | 71 | 627 | 0 | | Grp Sat Flow(s),veh/h/ln | 1728 | 1870 | 1553 | 1271 | 1870 | 1511 | 1781 | 1777 | 1553 | 513 | 1702 | 1585 | | Q Serve(g_s), s | 1.9 | 1.9 | 0.8 | 2.0 | 2.3 | 0.9 | 1.9 | 7.2 | 0.2 | 0.2 | 0.6 | 0.0 | | Cycle Q Clear(g_c), s | 1.9 | 1.9 | 0.8 | 2.0 | 2.3 | 0.9 | 1.9 | 7.2 | 0.2 | 0.2 | 0.6 | 0.0 | | Prop In Lane | 1.00 | 400 | 1.00 | 1.00 | 101 | 1.00 | 1.00 | 00.47 | 1.00 | 1.00 | 0444 | 1.00 | | Lane Grp Cap(c), veh/h | 361 | 463 | 585 | 227 | 184 | 174 | 663 | 2247 | 1005 | 333 | 2444 | | | V/C Ratio(X) | 0.22 | 0.11 | 0.04 | 0.14 | 0.28 | 0.10 | 0.15 | 0.48 | 0.02 | 0.21 | 0.26 | | | Avail Cap(c_a), veh/h | 829 | 802 | 867 | 285 | 270 | 243 | 698 | 2247 | 1005 | 333 | 2444 | 0.00 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.33 | 1.33 | 1.33 | 2.00 | 2.00 | 2.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.86 | 0.86 | 0.86 | 0.92 | 0.92 | 0.00 | | Uniform Delay (d), s/veh | 36.9 | 26.2 | 17.9 | 36.1 | 37.6 | 35.6 | 6.4 | 3.2 | 2.2 | 0.3 | 1.0 | 0.0 | | Incr Delay (d2), s/veh | 0.3 | 0.1 | 0.0 | 0.3 | 0.8 | 0.2 | 0.1 | 0.6 | 0.0 | 1.3 | 0.2 | 0.0 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln
Unsig. Movement Delay, s/veh | 1.5 | 1.5 | 0.5 | 1.1 | 1.9 | 0.6 | 1.1 | 3.3 | 0.1 | 0.5 | 0.4 | 0.0 | | LnGrp Delay(d),s/veh | 37.3 | 26.3 | 17.9 | 36.4 | 38.4 | 35.9 | 6.4 | 3.8 | 2.3 | 1.7 | 1.2 | 0.0 | | • | 37.3
D | 20.3
C | 17.9
B | 30.4
D | 30.4
D | 35.9
D | 0.4
A | | | | | 0.0 | | LnGrp LOS | U | | D | U | | U | A | A 1101 | A | A | A | Λ | | Approach Vol, veh/h | | 154 | | | 99 | | | 1191 | | | 698 | Α | | Approach LOS | | 30.9 | | | 37.3 | | | 4.0 | | | 1.3 | | | Approach LOS | | С | | | D | | | А | | | Α | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | | 6 | | 8 | | | | | | Phs Duration (G+Y+Rc), s | 13.8 | 48.4 | 13.4 | 14.4 | | 62.2 | | 27.8 | | | | | | Change Period (Y+Rc), s | 5.6 | * 5.3 | 5.6 | 5.5 | | * 5.3 | | 5.5 | | | | | | Max Green Setting (Gmax), s | 10.0 | * 25 | 20.0 | 13.0 | | * 41 | | 38.6 | | | | | | Max Q Clear Time (g_c+I1), s | 3.9 | 2.6 | 3.9 | 4.3 | | 9.2 | | 3.9 | | | | | | Green Ext Time (p_c), s | 0.1 | 9.4 | 0.2 | 0.2 | | 16.4 | | 0.3 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 6.6 | | | | | | | | | | | HCM 6th LOS | | | Α | | | | | | | | | | LAWA ATMP Project Synchro 10 Report Page 11 Fehr & Peers ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | | ۶ | → | • | • | ← | • | 4 | † | ~ | / | ţ | 4 | |--|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 14.54 | 1111 | 7 | ሻ | 1111 | 7 | 7 | ^ | 7 | ሻሻ | 41 | 7 | | Traffic Volume (veh/h) | 630 | 827 | 18 | 34 | 1586 | 730 | 25 | 43 | 55 | 202 | 31 | 250 | | Future Volume (veh/h) | 630 | 827 | 18 | 34 | 1586 | 730 | 25 | 43 | 55 | 202 | 31 | 250 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.99 | 1.00 | | 0.98 | 1.00 | | 0.97 | 1.00 | | 0.98 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 649 | 853 | 9 | 35 | 1635 | 708 | 26 | 44 | 1 | 208 | 32 | 57 | | Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 1174 | 4371 | 1084 | 51 | 2295 | 727 | 100 | 134 | 87 | 485 | 136 | 142 | | Arrive On Green | 0.68 | 1.00 | 1.00 | 0.01 | 0.12 | 0.12 | 0.06 | 0.04 | 0.06 | 0.09 | 0.07 | 0.09 | | Sat Flow, veh/h | 3456 | 6434 | 1569 | 1781 | 6434 | 1555 | 1781 | 3554 | 1543 | 5344 | 1870 | 1559 | | Grp Volume(v), veh/h | 649 | 853 | 9 | 35 | 1635 | 708 | 26 | 44 | 1 | 208 | 32 | 57 | | Grp Sat Flow(s),veh/h/ln | 1728 | 1609 | 1569 | 1781 | 1609 | 1555 | 1781 | 1777 | 1543 | 1781 | 1870 | 1559 | | Q Serve(g_s), s | 11.6 | 0.0 | 0.0 | 2.4 | 29.4 | 45.0 | 1.7 | 1.4 | 0.1 | 4.4 | 1.9 | 4.1 | | Cycle Q Clear(g_c), s | 11.6 | 0.0 | 0.0 | 2.4 | 29.4 | 45.0 | 1.7 | 1.4 | 0.1 | 4.4 | 1.9 | 4.1 | | Prop In Lane | 1.00 | 1071 | 1.00 | 1.00 | 0005 | 1.00 | 1.00 | 404 | 1.00 | 1.00 | 400 | 1.00 | | Lane Grp Cap(c), veh/h | 1174 | 4371 | 1084 | 51 | 2295 | 727 | 100 | 134 | 87 | 485 | 136 | 142 | | V/C Ratio(X) | 0.55 | 0.20 | 0.01 | 0.68 | 0.71 | 0.97 | 0.26 | 0.33 | 0.01 | 0.43 | 0.24 | 0.40 | | Avail Cap(c_a), veh/h | 1174 | 4371 | 1084 | 163 | 2295 | 727 | 191 | 317 | 166 | 1332 | 432 | 388 | | HCM Platoon Ratio | 2.00 | 2.00 | 2.00
0.95 | 0.33 | 0.33 | 0.33
1.00 | 1.00 | 1.00 | 1.00 | 1.00
0.99 | 1.00 | 1.00 | | Upstream Filter(I) | 0.95
14.5 | 0.95
0.0 | 0.95 | 1.00
58.9 | 1.00
47.0 | 40.9 | 1.00
54.2 | 1.00
56.3 | 1.00
53.5 | 51.6 | 0.99
52.5 | 0.99
51.5 | | Uniform Delay (d), s/veh
Incr Delay (d2), s/veh | 0.5 | 0.0 | 0.0 | 15.0 | 1.9 | 27.6 | 1.4 | 1.4 | 0.1 | 1.3 | 1.9 | 3.9 | | Initial Q Delay(d3),s/veh | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 6.1 | 0.0 | 0.0 | 2.3 | 18.9 | 37.2 | 1.4 | 1.2 | 0.0 | 3.6 | 1.8 | 3.2 | | Unsig. Movement Delay, s/veh | | 0.1 | 0.0 | 2.5 | 10.3 | 31.2 | 1.4 | 1.2 | 0.1 | 3.0 | 1.0 | J.Z | | LnGrp Delay(d),s/veh | 15.1 | 0.1 | 0.0 | 73.8 | 48.9 | 68.5 | 55.6 | 57.7 | 53.5 | 52.9 | 54.4 | 55.4 | | LnGrp LOS | В | Α | Α | 7 J.O | 70.5
D | E | 55.6
E | 57.7
E | D | 02.5
D | D | 55. 4 | | Approach Vol, veh/h | | 1511 | | <u> </u> | 2378 | | | 71 | | | 297 | | | Approach Delay, s/veh | | 6.5 | | | 55.1 | | | 56.9 | | | 53.5 | | | Approach LOS | | Α | | | 55.1
E | | | 50.5
E | | | 55.5
D | | | | | | | | | | | | | | D | | | Timer - Assigned Phs | 1 | 2 | | 4 | 5 | 6 | | 8 | | | | | | Phs Duration (G+Y+Rc), s | 7.4 | 86.9 | | 10.7 | 46.2 | 48.2 | | 14.9 | | | | | | Change Period (Y+Rc), s | * 4 | 5.4 | | * 6.2 | 5.4 | * 5.4 | | 6.2 | | | | | | Max Green Setting (Gmax), s | * 11 | 48.8 | | * 11 | 17.0 | * 43 | | 27.7 | | | | | | Max Q Clear Time (g_c+I1), s | 4.4 | 2.0 | | 3.7 | 13.6 | 47.0 | | 6.4 | | | | | | Green Ext Time (p_c), s | 0.0 | 16.1 | | 0.1 | 0.9 | 0.0 | | 2.3 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 37.8 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | Synchro 10 Report LAWA ATMP Project Page 12 Fehr & Peers User approved volume balancing among the lanes for turning movement. * HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ۶ | → | • | • | + | 4 | 1 | † | ~ | / | + | ✓ | |------------------------------|------|--------------|-------|------|----------|-------|-------|----------|------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT
| SBR | | Lane Configurations | 7 | 411 1 | | 7 | 4111 | | ሻሻ | ħβ | | ሻሻ | ^ | 7 | | Traffic Volume (veh/h) | 96 | 972 | 264 | 90 | 1988 | 177 | 691 | 612 | 106 | 67 | 328 | 163 | | Future Volume (veh/h) | 96 | 972 | 264 | 90 | 1988 | 177 | 691 | 612 | 106 | 67 | 328 | 163 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 110 | 1117 | 303 | 103 | 2285 | 203 | 794 | 703 | 108 | 77 | 377 | 79 | | Peak Hour Factor | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 352 | 1789 | 481 | 129 | 1389 | 123 | 846 | 930 | 143 | 239 | 468 | 522 | | Arrive On Green | 0.40 | 0.70 | 0.70 | 0.02 | 0.08 | 0.08 | 0.24 | 0.30 | 0.30 | 0.07 | 0.13 | 0.13 | | Sat Flow, veh/h | 1781 | 5084 | 1366 | 1781 | 6062 | 537 | 3456 | 3088 | 474 | 3456 | 3554 | 1585 | | Grp Volume(v), veh/h | 110 | 1060 | 360 | 103 | 1817 | 671 | 794 | 404 | 407 | 77 | 377 | 79 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1609 | 1624 | 1781 | 1609 | 1774 | 1728 | 1777 | 1785 | 1728 | 1777 | 1585 | | Q Serve(g_s), s | 5.1 | 13.9 | 14.2 | 6.9 | 27.5 | 27.5 | 27.0 | 24.7 | 24.7 | 2.5 | 12.4 | 0.0 | | Cycle Q Clear(g_c), s | 5.1 | 13.9 | 14.2 | 6.9 | 27.5 | 27.5 | 27.0 | 24.7 | 24.7 | 2.5 | 12.4 | 0.0 | | Prop In Lane | 1.00 | | 0.84 | 1.00 | | 0.30 | 1.00 | | 0.27 | 1.00 | | 1.00 | | Lane Grp Cap(c), veh/h | 352 | 1698 | 572 | 129 | 1106 | 406 | 846 | 535 | 538 | 239 | 468 | 522 | | V/C Ratio(X) | 0.31 | 0.62 | 0.63 | 0.80 | 1.64 | 1.65 | 0.94 | 0.76 | 0.76 | 0.32 | 0.81 | 0.15 | | Avail Cap(c_a), veh/h | 352 | 1698 | 572 | 153 | 1106 | 406 | 861 | 583 | 586 | 325 | 631 | 595 | | HCM Platoon Ratio | 2.00 | 2.00 | 2.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 0.98 | 0.98 | 0.98 | 0.96 | 0.96 | 0.96 | 1.00 | 1.00 | 1.00 | 0.89 | 0.89 | 0.89 | | Uniform Delay (d), s/veh | 30.6 | 13.6 | 13.6 | 57.7 | 55.5 | 55.5 | 44.4 | 37.9 | 37.9 | 53.2 | 50.6 | 28.4 | | Incr Delay (d2), s/veh | 0.5 | 1.7 | 5.1 | 20.8 | 293.5 | 302.9 | 17.5 | 5.1 | 5.2 | 0.3 | 5.0 | 0.1 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 3.8 | 6.5 | 7.5 | 7.1 | 64.9 | 72.6 | 19.3 | 16.7 | 16.8 | 2.0 | 9.4 | 2.9 | | Unsig. Movement Delay, s/veh | | 4-0 | 10 = | | 0.10.0 | 0-0.4 | 24.2 | 10.1 | 10.1 | 1 | | | | LnGrp Delay(d),s/veh | 31.1 | 15.3 | 18.7 | 78.5 | 348.9 | 358.4 | 61.9 | 43.1 | 43.1 | 53.4 | 55.6 | 28.5 | | LnGrp LOS | С | В | В | E | F | F | E | D | D | D | E | С | | Approach Vol, veh/h | | 1530 | | | 2591 | | | 1605 | | | 533 | | | Approach Delay, s/veh | | 17.2 | | | 340.6 | | | 52.4 | | | 51.3 | | | Approach LOS | | В | | | F | | | D | | | D | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 14.3 | 48.0 | 35.9 | 21.8 | 29.5 | 32.8 | 15.0 | 42.7 | | | | | | Change Period (Y+Rc), s | 5.6 | * 5.8 | * 6.5 | 6.0 | 5.8 | * 5.3 | * 6.7 | * 6.5 | | | | | | Max Green Setting (Gmax), s | 10.3 | * 35 | * 30 | 21.3 | 17.7 | * 28 | * 11 | * 39 | | | | | | Max Q Clear Time (g_c+I1), s | 8.9 | 16.2 | 29.0 | 14.4 | 7.1 | 29.5 | 4.5 | 26.7 | | | | | | Green Ext Time (p_c), s | 0.0 | 9.6 | 0.3 | 1.4 | 0.2 | 0.0 | 0.0 | 3.9 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 163.0 | | | | | | | | | | | HCM 6th LOS | | | F | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | • | → | • | • | ← | • | • | † | / | > | ţ | 1 | |------------------------------|------|----------|------|------|----------|---------|------|----------|------|-------------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ተተተ | 7 | ሻ | 4111 | | ሻ | ^ | 77 | ሻ | ^ | 77 | | Traffic Volume (veh/h) | 75 | 433 | 285 | 474 | 1049 | 1004 | 164 | 801 | 190 | 107 | 391 | 272 | | Future Volume (veh/h) | 75 | 433 | 285 | 474 | 1049 | 1004 | 164 | 801 | 190 | 107 | 391 | 272 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 77 | 442 | 196 | 484 | 1070 | 910 | 167 | 817 | 81 | 109 | 399 | 226 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 133 | 1966 | 650 | 616 | 2542 | 835 | 246 | 913 | 1181 | 146 | 913 | 785 | | Arrive On Green | 0.01 | 0.13 | 0.12 | 0.18 | 0.53 | 0.51 | 0.04 | 0.26 | 0.24 | 0.03 | 0.17 | 0.16 | | Sat Flow, veh/h | 1781 | 5106 | 1585 | 1781 | 4826 | 1585 | 1781 | 3554 | 2790 | 1781 | 3554 | 2790 | | Grp Volume(v), veh/h | 77 | 442 | 196 | 484 | 1070 | 910 | 167 | 817 | 81 | 109 | 399 | 226 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1702 | 1585 | 1781 | 1609 | 1585 | 1781 | 1777 | 1395 | 1781 | 1777 | 1395 | | Q Serve(g_s), s | 3.2 | 9.3 | 12.7 | 19.3 | 16.2 | 63.2 | 5.0 | 26.6 | 2.1 | 5.0 | 12.1 | 8.2 | | Cycle Q Clear(g_c), s | 3.2 | 9.3 | 12.7 | 19.3 | 16.2 | 63.2 | 5.0 | 26.6 | 2.1 | 5.0 | 12.1 | 8.2 | | Prop In Lane | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Lane Grp Cap(c), veh/h | 133 | 1966 | 650 | 616 | 2542 | 835 | 246 | 913 | 1181 | 146 | 913 | 785 | | V/C Ratio(X) | 0.58 | 0.22 | 0.30 | 0.79 | 0.42 | 1.09 | 0.68 | 0.89 | 0.07 | 0.75 | 0.44 | 0.29 | | Avail Cap(c_a), veh/h | 431 | 1966 | 650 | 661 | 2542 | 835 | 246 | 918 | 1185 | 146 | 918 | 789 | | HCM Platoon Ratio | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 0.67 | | Upstream Filter(I) | 0.98 | 0.98 | 0.98 | 1.00 | 1.00 | 1.00 | 0.86 | 0.86 | 0.86 | 0.92 | 0.92 | 0.92 | | Uniform Delay (d), s/veh | 30.9 | 36.3 | 34.3 | 16.8 | 17.3 | 29.4 | 40.7 | 43.0 | 20.5 | 39.0 | 41.9 | 37.4 | | Incr Delay (d2), s/veh | 3.8 | 0.3 | 1.2 | 5.9 | 0.5 | 58.4 | 6.3 | 9.9 | 0.0 | 17.7 | 0.3 | 0.2 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 2.7 | 7.5 | 9.4 | 13.3 | 9.9 | 49.3 | 4.8 | 18.0 | 1.2 | 5.6 | 9.2 | 5.1 | | Unsig. Movement Delay, s/veh | | | | | | , , , , | | | | | • | | | LnGrp Delay(d),s/veh | 34.7 | 36.5 | 35.4 | 22.6 | 17.8 | 87.8 | 47.0 | 52.9 | 20.6 | 56.6 | 42.2 | 37.6 | | LnGrp LOS | С | D | D | С | В | F | D | D | С | E | D | D | | Approach Vol, veh/h | | 715 | _ | | 2464 | | _ | 1065 | | _ | 734 | | | Approach Delay, s/veh | | 36.0 | | | 44.6 | | | 49.5 | | | 42.9 | | | Approach LOS | | D | | | D | | | D | | | D | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | | • | | | | | | • | | | | | | | Phs Duration (G+Y+Rc), s | 26.0 | 50.2 | 9.0 | 34.8 | 8.9 | 67.2 | 9.0 | 34.8 | | | | | | Change Period (Y+Rc), s | 4.0 | 6.0 | 4.0 | * 6 | 4.0 | 6.0 | 4.0 | * 6 | | | | | | Max Green Setting (Gmax), s | 25.0 | 41.0 | 5.0 | * 29 | 25.0 | 41.0 | 5.0 | * 29 | | | | | | Max Q Clear Time (g_c+I1), s | 21.3 | 14.7 | 7.0 | 14.1 | 5.2 | 65.2 | 7.0 | 28.6 | | | | | | Green Ext Time (p_c), s | 0.6 | 3.7 | 0.0 | 2.9 | 0.1 | 0.0 | 0.0 | 0.2 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 44.2 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | | Notes | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | Movement | | • | • | † | <i>></i> | > | ↓ | |
--|-----------------------|------------|--------|-------------|-------------|-------------|------------------|-----| | Traffic Volume (vph) | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | Traffic Volume (vph) 0 85 1091 48 492 620 Future Volume (vph) 1900 1900 1900 1900 1900 1900 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Total Lost time (s) 4.0 4.0 4.9 4.0 Lane Util. Factor 0.88 0.95 0.97 0.95 Friph, ped/bikes 1.00 1.00 1.00 1.00 Fit Protected 1.00 1.00 1.00 1.00 Satd. Flow (prot) 2787 3514 3433 3539 Fit Premitted 1.00 1.00 0.95 1.00 Satd. Flow (perm) 2787 3514 3433 3539 Peir Fit Protected 1.00 1.00 0.95 1.00 Satd. Flow (perm) 2787 3514 3433 3539 Fit Protected 1.00 1.00 1.00 1.00 Abj. Flow (perm) 0 85 1.00 | Lane Configurations | | 77 | ∱ 1≽ | | ሻሻ | ^ | | | Ideal Flow (yphpl) | | 0 | | | 48 | | | | | Total Lost time (s) | Future Volume (vph) | 0 | 85 | 1091 | 48 | 492 | 620 | | | Total Lost time (s) | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | Frpb, ped/bikes | | | 4.0 | 4.0 | | 4.9 | 4.0 | | | Fipb, ped/bikes | Lane Util. Factor | | 0.88 | 0.95 | | 0.97 | 0.95 | | | Fit Protected 1.00 1.00 0.95 1.00 Satd. Flow (prot) 2787 3514 3433 3539 Flt Permitted 1.00 1.00 0.95 1.00 Satd. Flow (perm) 2787 3514 3433 3539 Flt Permitted 1.00 1.00 0.95 1.00 Satd. Flow (perm) 2787 3514 3433 3539 Flt Permitted 1.00 1.00 1.00 0.95 1.00 Satd. Flow (perm) 2787 3514 3433 3539 Fleak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 0 85 1091 48 492 620 Flow (perm) 0 18 1132 0 492 620 Flow (perm) 0 18 1132 0 492 620 Flow (perm) 1 8 8 8 Flow (permitted Phases 1 8 2 8 Flow Flow (perm) 1 8 8 Flow (perm) 1 8 8 8 Flow Flow Flow Flow Flow Flow (perm) 1 8 8 8 Flow Flow Flow Flow Flow Flow Flow Flow | Frpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Fit Protected 1.00 1.00 1.00 0.95 1.00 Std. Flow (prot) 2787 3514 3433 3539 Flt Permitted 1.00 1.00 0.95 1.00 Std. Flow (perm) 2787 3514 3433 3539 Flt Permitted 1.00 1.00 0.95 1.00 Std. Flow (perm) 2787 3514 3433 3539 Flt Permitted 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (perm) 0 85 1091 48 492 620 Flow (perm) 0 18 1132 0 492 620 Flow (perm) 0 18 1132 0 492 620 Flow (perm) 1 8 1132 0 492 620 Flow (perm) 1 8 1132 0 492 620 Flow (perm) 1 8 1132 0 492 620 Flow (perm) 1 8 1132 0 492 620 Flow (perm) 1 8 8 8 | Flpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | | | Satd. Flow (prot) 2787 3514 3433 3539 Filt Permitted 1.00 1.00 0.95 1.00 Satd. Flow (perm) 2787 3514 3433 3539 Peak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 Adj. Flow (vph) 0 85 1091 48 492 620 RTOR Reduction (vph) 0 67 7 0 0 0 Lane Group Flow (vph) 0 18 1132 0 492 620 Confl. Peds. (#hr) 8 8 8 8 8 8 Turn Type Perm NA Prot NA Prot NA Protected Phases 2 8 8 28 8 28 8 28 8 28 8 28 8 41 41 41 41 41 41 42 42 42 8 45 0 42 8 4 | | | 0.85 | 0.99 | | 1.00 | 1.00 | | | Fit Permitted | Flt Protected | | 1.00 | 1.00 | | 0.95 | 1.00 | | | Fit Permitted | Satd. Flow (prot) | | | | | | | | | Satd. Flow (perm) 2787 3514 3433 3539 Peak-hour factor, PHF 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Adj. Flow (wph) 0 85 1091 48 492 620 Cord. Roduction (vph) 0 67 7 0 | | | 1.00 | 1.00 | | | 1.00 | | | Peak-hour factor, PHF | | | | | | | | | | Adj. Flow (vph) 0 85 1091 48 492 620 RTOR Reduction (vph) 0 67 7 0 0 0 Lane Group Flow (vph) 0 18 1132 0 492 620 Confl. Peds. (#/hr) 8 8 8 8 Turn Type Perm NA Prot NA Protected Phases 2 8 8 Permitted Phases 8 2.8 8 Actuated Green, G (s) 8.8 26.0 8.8 45.0 Effective Green, g (s) 9.7 27.3 8.8 41.4 Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 9 Vehicle Extension (s) 3.0 3.8 3.0 4.9 Vehicle Extension (s) 3.0 3.8 3.0 4.9 Ves Ratio Prot c0.32 c0.14 0.18 v/s Ratio Perm 0.01 <td></td> <td>1.00</td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td></td> | | 1.00 | | | 1.00 | | | | | RTOR Reduction (vph) 0 67 7 0 0 0 Lane Group Flow (vph) 0 18 1132 0 492 620 Confl. Peds. (#/hr) 8 8 8 8 Turn Type Perm NA Prot NA Protected Phases 2 8 Permitted Phases 8 2.8 Permitted Phases 8 2.8 2.8 Permitted Phases 8 2.8 Permitted Phases 8 2.8 Permitted Phases 8 2.8 Permitted Phases 8 2.8 Permitted Phases 8 2.8 Permitted Phases 8 2.8 2.8 Permitted Phases 8 2.8 2.8 Permitted Phases 8 2.8 2.8 Permitted Phases 8 2.8 2.8 2.8 2.8 4.9 2.8 4.9 4.9 4.1 4.0 4.1 4.0 4.1 4.9 4.2 4.9 4.3 3.3 4.9 4.2 4.1 | · · | | | | | | | | | Lane Group Flow (vph) 0 18 1132 0 492 620 Confl. Peds. (#/hr) 8 8 Turn Type Perm NA Prot NA Protected Phases 2 8 Permitted Phases 8 2 8 Actuated Green, G (s) 8.8 26.0 8.8 45.0 | | | | | | | | | | Confl. Peds. (#/hr) 8 8 Tum Type Perm NA Prot NA Protected Phases 2 8 Permitted Phases 8 2.8 Actuated Green, G (s) 8.8 26.0 8.8 45.0 Effective Green, g (s) 9.7 27.3 8.8 41.4 Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 4.9 5.3 4.9 Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 c0.18 c0.14 c0.18 v/s Ratio Perm 0.01 0.18 c0.14 c0.18 c0.14 c0.18 c0.14 c0.18 c0.14 c0.18 c0.14 c0.18 c0.18 c0.18 c0.14 c0.18 <td>\ . ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | \ . , | | | | | | | | | Turn Type Perm NA Prot NA Protected Phases 2 8 Permitted Phases 8 2 8 Actuated Green, G (s) 8.8 26.0 8.8 45.0 Effective Green, g (s) 9.7 27.3 8.8 41.4 Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 c0.18 v/s Ratio Prot c0.32 c0.14 c0.18 v/s Ratio Perm 0.01 0.18 c0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 | | U | 10 | 1102 | | | 020 | | | Protected Phases 2 8 Permitted Phases 8 2.8 Actuated Green, G (s) 8.8 26.0 8.8 45.0 Effective Green, g (s) 9.7 27.3 8.8 41.4 Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 c0.18 v/s Ratio Perm 0.01 0.18 0.18 v/s Ratio Perm 0.01 0.18 0.18 v/s Ratio Perm 0.01 0.18 0.18 v/s Ratio Perm 0.01 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 | | | Perm | NΔ | | | NΔ | | | Permitted Phases 8 2 8 Actuated Green, G (s) 8.8 26.0 8.8 45.0 Effective Green, g (s) 9.7 27.3 8.8 41.4 Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 v/s Ratio Perm 0.01 0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach LOS B A A A | | | FEIIII | | | | INA | | | Actuated Green, G (s) Effective Green, g (s) 9.7 27.3 8.8 41.4 Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 Vehicle Extension (s) 1.00 2131 1.01 3255 V/s Ratio Prot 1.00 1.00 1.01 0.18 1.02 0.92 Co.14 V/s Ratio Perm 1.00
1.00 1 | | | ρ | | | 0 | 2.8 | | | Effective Green, g (s) 9.7 27.3 8.8 41.4 Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 v/s Ratio Perm 0.01 0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | 26.0 | | 2 2 | | | | Actuated g/C Ratio 0.22 0.61 0.20 0.92 Clearance Time (s) 4.9 5.3 4.9 Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 v/s Ratio Perm 0.01 0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2%< | | | | | | | | | | Clearance Time (s) 4.9 5.3 4.9 Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 c0.18 v/s Ratio Perm 0.01 0.18 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A A Intersection Summary B A A A HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | Vehicle Extension (s) 3.0 3.8 3.0 Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 v/s Ratio Perm 0.01 0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A A Intersection Summary B A A A HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 A Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.92</td> <td></td> | | | | | | | 0.92 | | | Lane Grp Cap (vph) 600 2131 671 3255 v/s Ratio Prot c0.32 c0.14 v/s Ratio Perm 0.01 0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A A Intersection Summary Intersection Summary B A A A HCM 2000 Volume to Capacity ratio 0.58 A A A A Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | . , | | | | | | | | | V/s Ratio Prot c0.32 c0.14 v/s Ratio Perm 0.01 0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | | | | 2255 | | | v/s Ratio Perm 0.01 0.18 v/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary A HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 A Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | 600 | | | | 3255 | | | V/c Ratio 0.03 0.53 0.73 0.19 Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary A HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 A Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | 0.01 | cu.32 | | cu.14 | 0.40 | | | Uniform Delay, d1 13.9 5.1 17.0 0.2 Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary A HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 A Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | 0.50 | | 0.70 | | | | Progression Factor 1.00 1.00 1.00 1.00 Incremental Delay, d2 0.0 1.0 4.1 0.0 Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary A A A HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 A Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | | | | | | | Incremental Delay, d2 | | | | | | | | | | Delay (s) 14.0 6.1 21.1 0.2 Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary B A A HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | | | | | | | Level of Service B A C A Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | | | | | | | Approach Delay (s) 14.0 6.1 9.5 Approach LOS B A A Intersection Summary HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 Cutuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | | | | | | | Approach LOS B A A Intersection Summary HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | , | В | | | С | | | | Intersection Summary HCM 2000 Control Delay 8.0 HCM 2000 Level of Service A HCM 2000 Volume to Capacity ratio 0.58 Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | | | | | | | | | HCM 2000 Control Delay8.0HCM 2000 Level of ServiceAHCM 2000 Volume to Capacity ratio0.58Actuated Cycle Length (s)45.0Sum of lost time (s)8.9Intersection Capacity Utilization53.2%ICU Level of ServiceA | Approach LOS | В | | Α | | | Α | | | HCM 2000 Control Delay8.0HCM 2000 Level of ServiceAHCM 2000 Volume to Capacity ratio0.58Actuated Cycle Length (s)45.0Sum of lost time (s)8.9Intersection Capacity Utilization53.2%ICU Level of ServiceA | Intersection Summary | | | | | | | | | HCM 2000 Volume to Capacity ratio0.58Actuated Cycle Length (s)45.0Sum of lost time (s)8.9Intersection Capacity Utilization53.2%ICU Level of ServiceA | | | | 8.0 | Н | CM 2000 | Level of Service | Α | | Actuated Cycle Length (s) 45.0 Sum of lost time (s) 8.9 Intersection Capacity Utilization 53.2% ICU Level of Service A | | city ratio | | | | | | | | Intersection Capacity Utilization 53.2% ICU Level of Service A | | ., | | | Sı | um of lost | time (s) | 8.9 | | 1 7 | | tion | | | | | | | | | Analysis Period (min) | | | 15 | | | , | | | c Critical Lane Group | | | | | | | | | | | • | → | • | • | ← | • | • | † | / | > | ļ | 4 | |---------------------------------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|----------------------|-------------|-----------|-----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 1,1 | ^ | 7 | ¥ | ^ | 7 | * | ተተተ | 7 | ¥ | ተተተ | 7 | | Traffic Volume (veh/h) | 242 | 797 | 126 | 111 | 624 | 200 | 184 | 1326 | 111 | 362 |
1683 | 331 | | Future Volume (veh/h) | 242 | 797 | 126 | 111 | 624 | 200 | 184 | 1326 | 111 | 362 | 1683 | 331 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 249 | 822 | 38 | 114 | 643 | 81 | 190 | 1367 | 42 | 373 | 1735 | 196 | | Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 382 | 1099 | 490 | 269 | 1032 | 460 | 247 | 1846 | 722 | 291 | 1857 | 577 | | Arrive On Green | 0.11 | 0.31 | 0.31 | 0.09 | 0.29 | 0.29 | 0.10 | 0.36 | 0.36 | 0.10 | 0.36 | 0.36 | | Sat Flow, veh/h | 3456 | 3554 | 1585 | 1781 | 3554 | 1585 | 1781 | 5106 | 1585 | 1781 | 5106 | 1585 | | Grp Volume(v), veh/h | 249 | 822 | 38 | 114 | 643 | 81 | 190 | 1367 | 42 | 373 | 1735 | 196 | | Grp Sat Flow(s), veh/h/ln | 1728 | 1777 | 1585 | 1781 | 1777 | 1585 | 1781 | 1702 | 1585 | 1781 | 1702 | 1585 | | Q Serve(g_s), s | 8.3 | 24.9 | 1.4 | 0.0 | 18.8 | 4.6 | 7.7 | 28.0 | 0.4 | 12.3 | 39.3 | 10.8 | | Cycle Q Clear(g_c), s | 8.3 | 24.9 | 1.4 | 0.0 | 18.8 | 4.6 | 7.7 | 28.0 | 0.4 | 12.3 | 39.3 | 10.8 | | Prop In Lane | 1.00 | 21.0 | 1.00 | 1.00 | 10.0 | 1.00 | 1.00 | 20.0 | 1.00 | 1.00 | 00.0 | 1.00 | | Lane Grp Cap(c), veh/h | 382 | 1099 | 490 | 269 | 1032 | 460 | 247 | 1846 | 722 | 291 | 1857 | 577 | | V/C Ratio(X) | 0.65 | 0.75 | 0.08 | 0.42 | 0.62 | 0.18 | 0.77 | 0.74 | 0.06 | 1.28 | 0.93 | 0.34 | | Avail Cap(c_a), veh/h | 536 | 1285 | 573 | 272 | 1072 | 478 | 251 | 1846 | 722 | 291 | 1857 | 577 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.87 | 0.87 | 0.87 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 51.1 | 37.2 | 14.6 | 47.8 | 36.9 | 31.8 | 27.3 | 33.4 | 7.2 | 27.7 | 36.8 | 27.7 | | Incr Delay (d2), s/veh | 1.9 | 3.1 | 0.2 | 1.1 | 1.6 | 0.4 | 11.8 | 2.4 | 0.1 | 149.6 | 10.2 | 1.6 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 6.5 | 16.4 | 1.4 | 5.7 | 12.9 | 3.2 | 7.0 | 17.0 | 0.6 | 26.4 | 24.5 | 7.6 | | Unsig. Movement Delay, s/veh | | 10.4 | 1.7 | 5.1 | 12.5 | J.Z | 7.0 | 17.0 | 0.0 | 20.4 | 24.0 | 1.0 | | LnGrp Delay(d),s/veh | 53.0 | 40.4 | 14.7 | 48.9 | 38.5 | 32.2 | 39.1 | 35.8 | 7.4 | 177.3 | 47.0 | 29.3 | | LnGrp LOS | 55.0
D | 40.4
D | В | 40.9
D | 30.3
D | 32.2
C | 59.1
D | 55.0
D | 7. 4
A | 177.5
F | 47.0
D | 29.5
C | | Approach Vol, veh/h | ט | 1109 | <u> </u> | | 838 | | <u> </u> | 1599 | | <u> </u> | 2304 | | | · · · · · · · · · · · · · · · · · · · | | 42.3 | | | 39.3 | | | 35.4 | | | 66.6 | | | Approach LOS | | | | | | | | | | | 00.0
E | | | Approach LOS | | D | | | D | | | D | | | E | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 16.0 | 47.6 | 17.3 | 39.0 | 16.3 | 47.4 | 15.2 | 41.1 | | | | | | Change Period (Y+Rc), s | * 6.3 | 6.3 | * 6.6 | * 6.4 | * 6.3 | 6.3 | 6.4 | 6.2 | | | | | | Max Green Setting (Gmax), s | * 10 | 34.6 | * 16 | * 34 | * 10 | 34.6 | 9.0 | 41.2 | | | | | | Max Q Clear Time (g_c+I1), s | 9.7 | 41.3 | 10.3 | 20.8 | 14.3 | 30.0 | 2.0 | 26.9 | | | | | | Green Ext Time (p_c), s | 0.0 | 0.0 | 0.4 | 6.0 | 0.0 | 3.3 | 0.1 | 8.0 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 49.6 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | | Notos | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |------------------------------|------|----------|------|------|----------|------|-------|----------|------|-------------|------|----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | Ť | ^ | 7 | ň | ħβ | | ň | ተተተ | 7 | Ť | ተተተ | 7 | | Traffic Volume (veh/h) | 104 | 345 | 97 | 198 | 212 | 63 | 141 | 1181 | 235 | 80 | 1541 | 100 | | Future Volume (veh/h) | 104 | 345 | 97 | 198 | 212 | 63 | 141 | 1181 | 235 | 80 | 1541 | 100 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 0.96 | | 0.94 | 0.97 | | 0.94 | 1.00 | | 0.98 | 1.00 | | 0.98 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 109 | 363 | 43 | 208 | 223 | 28 | 148 | 1243 | 163 | 84 | 1622 | 51 | | Peak Hour Factor | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 428 | 955 | 543 | 394 | 930 | 115 | 268 | 2123 | 772 | 234 | 1915 | 667 | | Arrive On Green | 0.06 | 0.27 | 0.27 | 0.09 | 0.29 | 0.27 | 0.03 | 0.14 | 0.13 | 0.05 | 0.38 | 0.36 | | Sat Flow, veh/h | 1781 | 3554 | 1493 | 1781 | 3159 | 390 | 1781 | 5106 | 1559 | 1781 | 5106 | 1556 | | Grp Volume(v), veh/h | 109 | 363 | 43 | 208 | 124 | 127 | 148 | 1243 | 163 | 84 | 1622 | 51 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1777 | 1493 | 1781 | 1777 | 1772 | 1781 | 1702 | 1559 | 1781 | 1702 | 1556 | | Q Serve(g_s), s | 4.0 | 7.5 | 1.7 | 7.9 | 4.8 | 4.9 | 4.1 | 20.6 | 7.2 | 2.6 | 26.2 | 1.7 | | Cycle Q Clear(g_c), s | 4.0 | 7.5 | 1.7 | 7.9 | 4.8 | 4.9 | 4.1 | 20.6 | 7.2 | 2.6 | 26.2 | 1.7 | | Prop In Lane | 1.00 | | 1.00 | 1.00 | | 0.22 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Lane Grp Cap(c), veh/h | 428 | 955 | 543 | 394 | 523 | 522 | 268 | 2123 | 772 | 234 | 1915 | 667 | | V/C Ratio(X) | 0.25 | 0.38 | 0.08 | 0.53 | 0.24 | 0.24 | 0.55 | 0.59 | 0.21 | 0.36 | 0.85 | 0.08 | | Avail Cap(c_a), veh/h | 473 | 1106 | 606 | 394 | 553 | 551 | 306 | 2123 | 772 | 345 | 1915 | 667 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.74 | 0.74 | 0.74 | 0.24 | 0.24 | 0.24 | | Uniform Delay (d), s/veh | 22.9 | 26.8 | 19.1 | 22.7 | 24.1 | 24.3 | 20.4 | 31.5 | 19.4 | 18.3 | 25.8 | 15.3 | | Incr Delay (d2), s/veh | 0.3 | 0.2 | 0.1 | 1.3 | 0.2 | 0.2 | 1.3 | 0.9 | 0.5 | 0.2 | 1.2 | 0.1 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 3.0 | 5.6 | 1.0 | 5.8 | 3.5 | 3.6 | 3.1 | 13.8 | 5.0 | 1.8 | 12.7 | 1.1 | | Unsig. Movement Delay, s/veh | | | 10.1 | 212 | 212 | 212 | 0.4 = | 22.1 | 40.0 | 40 = | | | | LnGrp Delay(d),s/veh | 23.2 | 27.0 | 19.1 | 24.0 | 24.3 | 24.6 | 21.7 | 32.4 | 19.9 | 18.5 | 27.0 | 15.3 | | LnGrp LOS | С | С | В | С | С | С | С | С | В | В | С | <u>B</u> | | Approach Vol, veh/h | | 515 | | | 459 | | | 1554 | | | 1757 | | | Approach Delay, s/veh | | 25.6 | | | 24.2 | | | 30.1 | | | 26.2 | | | Approach LOS | | С | | | С | | | С | | | С | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 9.7 | 30.5 | 12.1 | 37.8 | 12.0 | 28.2 | 8.4 | 41.4 | | | | | | Change Period (Y+Rc), s | 4.0 | * 6 | * 6 | * 5 | 4.0 | * 6 | 4.0 | * 5 | | | | | | Max Green Setting (Gmax), s | 8.0 | * 26 | * 8 | * 27 | 8.0 | * 26 | 10.0 | * 27 | | | | | | Max Q Clear Time (g_c+I1), s | 6.0 | 6.9 | 6.1 | 28.2 | 9.9 | 9.5 | 4.6 | 22.6 | | | | | | Green Ext Time (p_c), s | 0.0 | 1.2 | 0.1 | 0.0 | 0.0 | 2.2 | 0.1 | 3.1 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 27.3 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | ۶ | → | • | • | ← | • | 4 | † | / | > | ţ | 4 | |------------------------------|------|------------|------|------|----------|------|------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | J. | ∱ } | | ¥ | ħβ | | ¥ | ተተተ | 7 | ¥ | ተተተ | 7 | | Traffic Volume (veh/h) | 47 | 314 | 111 | 161 | 280 | 130 | 157 | 1416 | 47 | 220 | 1593 | 42 | | Future Volume (veh/h) | 47 | 314 | 111 | 161 | 280 | 130 | 157 | 1416 | 47 | 220 | 1593 | 42 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 0.98 | | 0.97 | 0.99 | | 0.97 | 1.00 | | 0.98 | 1.00 | | 0.98 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 48 | 320 | 67 | 164 | 286 | 65 | 160 | 1445 | 24 | 224 | 1626 | 21 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 327 | 640 | 132 | 347 | 774 | 173 | 309 | 2126 | 772 | 316 | 2247 | 730 | | Arrive On Green | 0.04 | 0.22 | 0.21 | 0.09 | 0.27 | 0.26 | 0.07 | 0.42 | 0.41 | 0.19 | 0.88 | 0.86 | | Sat Flow, veh/h | 1781 | 2913 | 600 | 1781 | 2870 | 640 | 1781 | 5106 | 1557 | 1781 | 5106 | 1558 | | Grp Volume(v), veh/h | 48 | 193 | 194 | 164 | 175 | 176 | 160 | 1445 | 24 | 224 | 1626 | 21 | | Grp Sat
Flow(s),veh/h/ln | 1781 | 1777 | 1737 | 1781 | 1777 | 1733 | 1781 | 1702 | 1557 | 1781 | 1702 | 1558 | | Q Serve(g_s), s | 1.9 | 8.6 | 8.8 | 6.2 | 7.2 | 7.5 | 4.6 | 20.7 | 0.7 | 6.7 | 9.5 | 0.2 | | Cycle Q Clear(g_c), s | 1.9 | 8.6 | 8.8 | 6.2 | 7.2 | 7.5 | 4.6 | 20.7 | 0.7 | 6.7 | 9.5 | 0.2 | | Prop In Lane | 1.00 | | 0.35 | 1.00 | | 0.37 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Lane Grp Cap(c), veh/h | 327 | 390 | 382 | 347 | 479 | 468 | 309 | 2126 | 772 | 316 | 2247 | 730 | | V/C Ratio(X) | 0.15 | 0.49 | 0.51 | 0.47 | 0.37 | 0.38 | 0.52 | 0.68 | 0.03 | 0.71 | 0.72 | 0.03 | | Avail Cap(c_a), veh/h | 416 | 533 | 521 | 347 | 533 | 520 | 376 | 2126 | 772 | 341 | 2247 | 730 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 0.90 | 0.90 | 0.90 | 1.00 | 1.00 | 1.00 | 0.65 | 0.65 | 0.65 | | Uniform Delay (d), s/veh | 26.2 | 30.7 | 31.0 | 23.7 | 26.6 | 26.9 | 14.1 | 21.4 | 11.7 | 15.8 | 3.6 | 3.2 | | Incr Delay (d2), s/veh | 0.2 | 1.0 | 1.0 | 0.9 | 0.4 | 0.5 | 1.3 | 1.8 | 0.1 | 4.0 | 1.3 | 0.0 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 1.4 | 6.5 | 6.6 | 4.6 | 5.3 | 5.4 | 3.3 | 12.7 | 0.4 | 4.4 | 2.9 | 0.1 | | Unsig. Movement Delay, s/veh | | | 22.4 | 212 | | | | 22.1 | 44.0 | 40.0 | | | | LnGrp Delay(d),s/veh | 26.5 | 31.7 | 32.1 | 24.6 | 27.0 | 27.3 | 15.4 | 23.1 | 11.8 | 19.8 | 4.9 | 3.2 | | LnGrp LOS | С | С | С | С | С | С | В | С | В | В | Α | A | | Approach Vol, veh/h | | 435 | | | 515 | | | 1629 | | | 1871 | | | Approach Delay, s/veh | | 31.3 | | | 26.4 | | | 22.2 | | | 6.7 | | | Approach LOS | | С | | | С | | | С | | | Α | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 10.6 | 43.6 | 7.5 | 28.3 | 12.7 | 41.5 | 12.0 | 23.8 | | | | | | Change Period (Y+Rc), s | 4.0 | * 5 | 4.0 | * 5 | 4.0 | * 5 | 4.0 | * 5 | | | | | | Max Green Setting (Gmax), s | 10.0 | * 28 | 8.0 | * 26 | 10.0 | * 28 | 8.0 | * 26 | | | | | | Max Q Clear Time (g_c+I1), s | 6.6 | 11.5 | 3.9 | 9.5 | 8.7 | 22.7 | 8.2 | 10.8 | | | | | | Green Ext Time (p_c), s | 0.1 | 10.5 | 0.0 | 1.7 | 0.1 | 3.9 | 0.0 | 1.8 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 17.1 | | | | | | | | | | | HCM 6th LOS | | | В | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | ۶ | • | 1 | † | | 4 | |------------------------------|------|------|-----------|----------|---------|------| | Movement | EBL | EBR | NBL | NBT | SBT | SBR | | Lane Configurations | | 1111 | ነነነነ | | 1111 | 7 | | Traffic Volume (veh/h) | 0 | 1878 | 1421 | 0 | 1939 | 24 | | Future Volume (veh/h) | 0 | 1878 | 1421 | 0 | 1939 | 24 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | 1.00 | 1.00 | | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | No | | | No | No | | | Adj Sat Flow, veh/h/ln | 0 | 1870 | 1870 | 0 | 1870 | 1870 | | Adj Flow Rate, veh/h | 0 | 1916 | 1450 | 0 | 1979 | 0 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 0 | 2 | 2 | 0 | 2 | 2 | | Cap, veh/h | 0 | 0 | 1907 | 0 | 0 | | | Arrive On Green | 0.00 | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | | Sat Flow, veh/h | 0 | | 6484 | 1450 | 0 | | | Grp Volume(v), veh/h | 0.0 | | 1450 | 29.6 | 0.0 | | | Grp Sat Flow(s), veh/h/ln | | | 1621 | C | | | | Q Serve(g_s), s | | | 18.3 | | | | | Cycle Q Clear(g_c), s | | | 18.3 | | | | | Prop In Lane | | | 1.00 | | | | | Lane Grp Cap(c), veh/h | | | 1907 | | | | | V/C Ratio(X) | | | 0.76 | | | | | Avail Cap(c_a), veh/h | | | 2824 | | | | | HCM Platoon Ratio | | | 1.00 | | | | | Upstream Filter(I) | | | 1.00 | | | | | Uniform Delay (d), s/veh | | | 28.9 | | | | | Incr Delay (d2), s/veh | | | 0.7 | | | | | Initial Q Delay(d3),s/veh | | | 0.0 | | | | | %ile BackOfQ(95%),veh/ln | | | 11.2 | | | | | Unsig. Movement Delay, s/veh | | | 11.2 | | | | | LnGrp Delay(d),s/veh | | | 29.6 | | | | | LnGrp LOS | | | 23.0
C | | | | | Approach Vol, veh/h | | | | | | | | Approach Delay, s/veh | | | | | | | | Approach LOS | | | | | | | | Approach LOS | | | | | | | | Timer - Assigned Phs | | | 3 | | | | | Phs Duration (G+Y+Rc), s | | | 32.5 | | | | | Change Period (Y+Rc), s | | | * 6 | | | | | Max Green Setting (Gmax), s | | | * 39 | | | | | Max Q Clear Time (g_c+I1), s | | | 20.3 | | | | | Green Ext Time (p_c), s | | | 6.2 | | | | | `` ' | | | | | | | | Intersection Summary | | | 00.0 | | | | | HCM 6th Ctrl Delay | | | 29.6 | | | | | HCM 6th LOS | | | С | | | | | Notos | | | | | | | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 4 ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | Intersection | | | | | | | | | | | | | |------------------------|--------|-------|--------|----------|------|------|---------|----------|------|---------|------------|------| | Int Delay, s/veh | 0.5 | | | | | | | | | | | | | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | 7 | | | 7 | | ^ | 7 | | ^ ^ | 7 | | Traffic Vol, veh/h | 0 | 0 | 63 | 0 | 0 | 522 | 0 | 2213 | 327 | 0 | 1960 | 216 | | Future Vol, veh/h | 0 | 0 | 63 | 0 | 0 | 522 | 0 | 2213 | 327 | 0 | 1960 | 216 | | Conflicting Peds, #/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 0 | 0 | 0 | | Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free | | RT Channelized | - | - | Stop | <u>-</u> | - | Free | - | - | Free | - | - | Free | | Storage Length | - | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | | Veh in Median Storage | ,# - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | | Grade, % | _ | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - | | Peak Hour Factor | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | 92 | | Heavy Vehicles, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Mvmt Flow | 0 | 0 | 68 | 0 | 0 | 567 | 0 | 2405 | 355 | 0 | 2130 | 235 | | | | | | | | | | | | | | | | Major/Minor N | Minor2 | | ľ | Minor1 | | N | /lajor1 | | N | //ajor2 | | | | Conflicting Flow All | _ | - | 1065 | - | - | - | - | 0 | - | - | - | 0 | | Stage 1 | - | - | - | - | - | - | - | - | - | - | - | - | | Stage 2 | - | - | - | - | - | - | - | - | - | - | - | - | | Critical Hdwy | - | - | 7.14 | - | - | - | - | - | - | - | - | - | | Critical Hdwy Stg 1 | _ | _ | - | - | - | - | - | _ | _ | _ | - | - | | Critical Hdwy Stg 2 | - | _ | - | - | - | - | - | - | - | - | - | - | | Follow-up Hdwy | - | - | 3.92 | - | - | - | - | - | - | - | - | - | | Pot Cap-1 Maneuver | 0 | 0 | 188 | 0 | 0 | 0 | 0 | - | 0 | 0 | - | 0 | | Stage 1 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | - | 0 | | Stage 2 | 0 | 0 | - | 0 | 0 | 0 | 0 | - | 0 | 0 | - | 0 | | Platoon blocked, % | | | | | | | | - | | | - | | | Mov Cap-1 Maneuver | - | - | 188 | - | - | - | - | - | - | - | - | - | | Mov Cap-2 Maneuver | - | - | - | - | - | - | - | - | - | - | - | - | | Stage 1 | - | - | - | - | - | - | - | - | - | - | - | - | | Stage 2 | - | - | - | - | - | - | - | - | - | - | - | - | | ŭ | | | | | | | | | | | | | | Approach | EB | | | WB | | | NB | | | SB | | | | HCM Control Delay, s | 34.7 | | | 0 | | | 0 | | | 0 | | | | HCM LOS | D | | | Α | Minor Lane/Major Mvm | t | NBT E | EBLn1V | VBLn1 | SBT | | | | | | | | | Capacity (veh/h) | | - | 188 | - | - | | | | | | | | | HCM Lane V/C Ratio | | - | 0.364 | - | - | | | | | | | | | HCM Control Delay (s) | | - | 34.7 | 0 | - | | | | | | | | | HCM Lane LOS | | - | D | Α | - | | | | | | | | | HCM 95th %tile Q(veh) | | - | 1.6 | - | - | | | | | | | | | • | | | | | | | | | | | | | | | ၨ | → | \rightarrow | • | ← | • | • | † | / | > | ļ | 4 | |------------------------------|-----|----------|---------------|-------|----------|------|------|----------|------|-------------|------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | ሻ | र्स | 77 | | 1111 | | | 1111 | 7 | | Traffic Volume (veh/h) | 0 | 0 | 0 | 561 | 117 | 308 | 0 | 2950 | 39 | 0 | 2594 | 94 | | Future Volume (veh/h) | 0 | 0 | 0 | 561 | 117 | 308 | 0 | 2950 | 39 | 0 | 2594 | 94 | | Initial Q (Qb), veh | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | | | | 1.00 | | 0.91 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | | | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | | | | 1870 | 1870 | 1870 | 0 | 1870 | 1870 | 0 | 1870 | 1870 | | Adj Flow Rate, veh/h | | | | 671 | 0 | 321 | 0 | 3073 | 40 | 0 | 2702 | 0 | | Peak Hour Factor | | | | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | Percent Heavy Veh, % | | | | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | | Cap, veh/h | | | | 1078 | 0 | 877 | 0 | 3989 | 52 | 0 | 3892 | | | Arrive On Green | | | | 0.10 | 0.00 | 0.10 | 0.00 | 0.60 | 0.60 | 0.00 | 0.60 | 0.00 | | Sat Flow, veh/h | | | | 3563 | 0 | 2900 | 0 | 6857 | 86 | 0 | 6696 | 1585 | | Grp Volume(v), veh/h | | | | 671 | 0 | 321 | 0 | 2247 | 866 | 0 | 2702 | 0 | | Grp Sat Flow(s),veh/h/ln | | | | 1781 | 0 | 1450 | 0 | 1609 | 1855 | 0 | 1609 | 1585 | | Q Serve(g_s), s | | | | 21.7 | 0.0 | 12.4 | 0.0 | 41.3 | 41.5 | 0.0 | 34.3 | 0.0 | | Cycle Q Clear(g_c), s | | | | 21.7 | 0.0 | 12.4 | 0.0 | 41.3 | 41.5 | 0.0 | 34.3 | 0.0 | | Prop In Lane | | | | 1.00 | | 1.00 | 0.00 | | 0.05 | 0.00 | | 1.00 | | Lane Grp Cap(c), veh/h | | | | 1078 | 0 | 877 | 0 | 2919 | 1122 | 0 | 3892 | | | V/C Ratio(X) | | | | 0.62 | 0.00 | 0.37 | 0.00 | 0.77 | 0.77 | 0.00 | 0.69 | | | Avail Cap(c_a), veh/h | | |
 1170 | 0 | 952 | 0 | 2919 | 1122 | 0 | 3892 | | | HCM Platoon Ratio | | | | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | | | | 0.85 | 0.00 | 0.85 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 0.00 | | Uniform Delay (d), s/veh | | | | 47.4 | 0.0 | 43.3 | 0.0 | 17.5 | 17.6 | 0.0 | 16.1 | 0.0 | | Incr Delay (d2), s/veh | | | | 0.8 | 0.0 | 0.2 | 0.0 | 1.3 | 3.4 | 0.0 | 1.0 | 0.0 | | Initial Q Delay(d3),s/veh | | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | | | | 15.4 | 0.0 | 8.2 | 0.0 | 20.7 | 24.3 | 0.0 | 17.7 | 0.0 | | Unsig. Movement Delay, s/veh | | | | | | | | | | | | | | LnGrp Delay(d),s/veh | | | | 48.2 | 0.0 | 43.5 | 0.0 | 18.8 | 20.9 | 0.0 | 17.2 | 0.0 | | LnGrp LOS | | | | D | Α | D | Α | В | С | Α | В | | | Approach Vol, veh/h | | | | | 992 | | | 3113 | | | 2702 | Α | | Approach Delay, s/veh | | | | | 46.7 | | | 19.4 | | | 17.2 | | | Approach LOS | | | | | D | | | В | | | В | | | Timer - Assigned Phs | | 2 | | 4 | | 6 | | | | | | | | Phs Duration (G+Y+Rc), s | | 77.6 | | 42.4 | | 77.6 | | | | | | | | Change Period (Y+Rc), s | | * 5 | | * 6.1 | | * 5 | | | | | | | | Max Green Setting (Gmax), s | | * 70 | | * 39 | | * 70 | | | | | | | | Max Q Clear Time (g_c+l1), s | | 36.3 | | 23.7 | | 43.5 | | | | | | | | Green Ext Time (p_c), s | | 28.1 | | 3.7 | | 23.5 | | | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 22.5 | | | | | | | | | | | HCM 6th LOS | | | 22.5
C | | | | | | | | | | | HOW OUT LOS | | | C | | | | | | | | | | User approved volume balancing among the lanes for turning movement. * HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | | • | • | † | / | - | ↓ | | | | |-----------------------------------|----------|-------|----------|----------|------------|------------------|---|-----|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | | Lane Configurations | | 777 | ተተተ | | | ^ | | | | | Traffic Volume (vph) | 0 | 1842 | 1976 | 0 | 0 | 0 | | | | | Future Volume (vph) | 0 | 1842 | 1976 | 0 | 0 | 0 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 4.0 | 4.0 | | | | | | | | Lane Util. Factor | | 0.76 | 0.91 | | | | | | | | Frt | | 0.85 | 1.00 | | | | | | | | Flt Protected | | 1.00 | 1.00 | | | | | | | | Satd. Flow (prot) | | 3610 | 5085 | | | | | | | | Flt Permitted | | 1.00 | 1.00 | | | | | | | | Satd. Flow (perm) | | 3610 | 5085 | | | | | | | | Peak-hour factor, PHF | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | | | | Adj. Flow (vph) | 0 | 1960 | 2102 | 0 | 0 | 0 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Lane Group Flow (vph) | 0 | 1960 | 2102 | 0 | 0 | 0 | | | | | Turn Type | | Perm | NA | | | | | | | | Protected Phases | | | 2 | | | Free | | | | | Permitted Phases | | 8 | _ | | | Free | | | | | Actuated Green, G (s) | | 47.0 | 36.0 | | | | | | | | Effective Green, g (s) | | 46.0 | 36.0 | | | | | | | | Actuated g/C Ratio | | 0.51 | 0.40 | | | | | | | | Clearance Time (s) | | 3.0 | 4.0 | | | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | | | | | | | Lane Grp Cap (vph) | | 1845 | 2034 | | | | | | | | v/s Ratio Prot | | | c0.41 | | | | | | | | v/s Ratio Perm | | c0.54 | | | | | | | | | v/c Ratio | | 1.06 | 1.03 | | | | | | | | Uniform Delay, d1 | | 22.0 | 27.0 | | | | | | | | Progression Factor | | 1.00 | 1.00 | | | | | | | | Incremental Delay, d2 | | 39.8 | 29.2 | | | | | | | | Delay (s) | | 61.8 | 56.2 | | | | | | | | Level of Service | | E | E | | | | | | | | Approach Delay (s) | 61.8 | _ | 56.2 | | | 0.0 | | | | | Approach LOS | E | | E | | | A | | | | | Intersection Summary | | | | | | | | | | | HCM 2000 Control Delay | | | 58.9 | Н | CM 2000 | Level of Service |) | Е | | | HCM 2000 Volume to Capaci | tv ratio | | 1.04 | | | | | | | | Actuated Cycle Length (s) | ., | | 90.0 | Sı | um of lost | time (s) | | 7.0 | | | Intersection Capacity Utilization | on | | 59.6% | | | of Service | | В | | | Analysis Period (min) | | | 15 | .0 | 2 23701 0 | 55. 1.55 | | | | | c Critical Lane Group | | | | | | | | | | | | ۶ | → | • | • | - | • | 1 | † | / | / | ↓ | 4 | |------------------------------|-------|----------|------|-------|------|------|-------|----------|----------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 14.14 | ተተተ | 7 | 14.54 | ተተተ | 7 | 7 | ተተተ | 7 | ሻሻ | 4111 | | | Traffic Volume (veh/h) | 130 | 352 | 131 | 154 | 296 | 393 | 168 | 1435 | 755 | 454 | 2087 | 31 | | Future Volume (veh/h) | 130 | 352 | 131 | 154 | 296 | 393 | 168 | 1435 | 755 | 454 | 2087 | 31 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.99 | 1.00 | | 0.99 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 135 | 367 | 14 | 160 | 308 | 365 | 175 | 1495 | 618 | 473 | 2174 | 30 | | Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 205 | 867 | 268 | 232 | 908 | 537 | 139 | 2163 | 666 | 558 | 3342 | 46 | | Arrive On Green | 0.06 | 0.17 | 0.17 | 0.07 | 0.18 | 0.18 | 0.08 | 0.42 | 0.42 | 0.16 | 0.51 | 0.51 | | Sat Flow, veh/h | 3456 | 5106 | 1579 | 3456 | 5106 | 1580 | 1781 | 5106 | 1573 | 3456 | 6588 | 91 | | Grp Volume(v), veh/h | 135 | 367 | 14 | 160 | 308 | 365 | 175 | 1495 | 618 | 473 | 1592 | 612 | | Grp Sat Flow(s),veh/h/ln | 1728 | 1702 | 1579 | 1728 | 1702 | 1580 | 1781 | 1702 | 1573 | 1728 | 1609 | 1853 | | Q Serve(g_s), s | 3.4 | 5.8 | 0.7 | 4.1 | 4.8 | 16.0 | 7.0 | 21.5 | 33.6 | 12.0 | 21.8 | 21.8 | | Cycle Q Clear(g_c), s | 3.4 | 5.8 | 0.7 | 4.1 | 4.8 | 16.0 | 7.0 | 21.5 | 33.6 | 12.0 | 21.8 | 21.8 | | Prop In Lane | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 0.05 | | Lane Grp Cap(c), veh/h | 205 | 867 | 268 | 232 | 908 | 537 | 139 | 2163 | 666 | 558 | 2448 | 940 | | V/C Ratio(X) | 0.66 | 0.42 | 0.05 | 0.69 | 0.34 | 0.68 | 1.26 | 0.69 | 0.93 | 0.85 | 0.65 | 0.65 | | Avail Cap(c_a), veh/h | 307 | 908 | 281 | 307 | 908 | 537 | 139 | 2163 | 666 | 653 | 2448 | 940 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 41.4 | 33.4 | 31.3 | 41.1 | 32.4 | 25.5 | 41.5 | 21.1 | 24.6 | 36.7 | 16.3 | 16.3 | | Incr Delay (d2), s/veh | 3.6 | 0.3 | 0.1 | 4.2 | 0.2 | 3.5 | 163.6 | 1.8 | 21.0 | 9.0 | 1.4 | 3.5 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 2.7 | 4.2 | 0.5 | 3.3 | 3.4 | 11.0 | 15.4 | 13.1 | 21.6 | 9.5 | 12.1 | 14.3 | | Unsig. Movement Delay, s/veh | | | | | | | | | | | | | | LnGrp Delay(d),s/veh | 45.0 | 33.7 | 31.4 | 45.2 | 32.6 | 29.0 | 205.1 | 23.0 | 45.6 | 45.7 | 17.7 | 19.8 | | LnGrp LOS | D | С | С | D | С | С | F | С | D | D | В | В | | Approach Vol, veh/h | | 516 | | | 833 | | | 2288 | | | 2677 | | | Approach Delay, s/veh | | 36.6 | | | 33.4 | | | 43.0 | | | 23.1 | | | Approach LOS | | D | | | C | | | D | | | C | | | | | | | | | | _ | | | | | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 18.5 | 42.1 | 10.0 | 19.3 | 11.0 | 49.7 | 9.3 | 20.0 | | | | | | Change Period (Y+Rc), s | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 | | | | | | Max Green Setting (Gmax), s | 17.0 | 33.0 | 8.0 | 16.0 | 7.0 | 43.0 | 8.0 | 16.0 | | | | | | Max Q Clear Time (g_c+I1), s | 14.0 | 35.6 | 6.1 | 7.8 | 9.0 | 23.8 | 5.4 | 18.0 | | | | | | Green Ext Time (p_c), s | 0.6 | 0.0 | 0.1 | 1.4 | 0.0 | 14.4 | 0.1 | 0.0 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 32.8 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | | Notes | | | | | | | | | | | | | User approved changes to right turn type. | | ۶ | → | • | • | ← | • | • | † | ~ | > | ļ | 4 | |------------------------------|------|----------|------|------|----------|-------|------|----------|------|-------------|------------|----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | ሻ | ^ | 7 | 7 | ↑ | 7 | 7 | ∱ ∱ | | | Traffic Volume (veh/h) | 84 | 692 | 2 | 2 | 630 | 100 | 22 | 0 | 58 | 137 | 0 | 66 | | Future Volume (veh/h) | 84 | 692 | 2 | 2 | 630 | 100 | 22 | 0 | 58 | 137 | 0 | 66 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.99 | 1.00 | | 1.00 | 0.98 | | 0.98 | 0.98 | | 0.98 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 86 | 706 | 1 | 2 | 643 | 72 | 22 | 0 | 9 | 140 | 0 | 10 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 498 | 2542 | 1125 | 557 | 2542 | 1128 | 299 | 308 | 256 | 307 | 293 | 256 | | Arrive On Green | 0.72 | 0.72 | 0.72 | 0.24 | 0.24 | 0.24 | 0.16 | 0.00 | 0.16 | 0.16 | 0.00 | 0.16 | | Sat Flow, veh/h | 735 | 3554 |
1573 | 740 | 3554 | 1578 | 1375 | 1870 | 1550 | 1376 | 1777 | 1550 | | Grp Volume(v), veh/h | 86 | 706 | 1 | 2 | 643 | 72 | 22 | 0 | 9 | 140 | 0 | 10 | | Grp Sat Flow(s), veh/h/ln | 735 | 1777 | 1573 | 740 | 1777 | 1578 | 1375 | 1870 | 1550 | 1376 | 1777 | 1550 | | Q Serve(g_s), s | 5.1 | 6.4 | 0.0 | 0.2 | 13.2 | 3.2 | 1.2 | 0.0 | 0.4 | 8.5 | 0.0 | 0.5 | | Cycle Q Clear(g_c), s | 18.4 | 6.4 | 0.0 | 6.5 | 13.2 | 3.2 | 1.7 | 0.0 | 0.4 | 8.5 | 0.0 | 0.5 | | Prop In Lane | 1.00 | 0.4 | 1.00 | 1.00 | 13.2 | 1.00 | 1.00 | 0.0 | 1.00 | 1.00 | 0.0 | 1.00 | | Lane Grp Cap(c), veh/h | 498 | 2542 | 1125 | 557 | 2542 | 1128 | 299 | 308 | 256 | 307 | 293 | 256 | | V/C Ratio(X) | 0.17 | 0.28 | 0.00 | 0.00 | 0.25 | 0.06 | 0.07 | 0.00 | 0.04 | 0.46 | 0.00 | 0.04 | | Avail Cap(c_a), veh/h | 498 | 2542 | 1125 | 557 | 2542 | 1128 | 616 | 740 | 613 | 624 | 703 | 613 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | 1.00 | 1.00 | 1.00 | 0.33 | 0.33 | 0.33 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | | Upstream Filter(I) | 9.5 | 4.6 | 3.7 | | | | 32.3 | 0.00 | | 34.9 | | | | Uniform Delay (d), s/veh | | | | 14.8 | 14.8 | 11.0 | | | 31.6 | | 0.0 | 31.6 | | Incr Delay (d2), s/veh | 0.8 | 0.3 | 0.0 | 0.0 | 0.2 | 0.1 | 0.1 | 0.0 | 0.1 | 1.1 | 0.0 | 0.1 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 1.5 | 3.2 | 0.0 | 0.1 | 10.1 | 1.6 | 0.7 | 0.0 | 0.3 | 5.3 | 0.0 | 0.3 | | Unsig. Movement Delay, s/veh | | 4.0 | 0.7 | 440 | 45.4 | 44.4 | 00.4 | 0.0 | 04.0 | 00.0 | 0.0 | 04.7 | | LnGrp Delay(d),s/veh | 10.3 | 4.8 | 3.7 | 14.8 | 15.1 | 11.1 | 32.4 | 0.0 | 31.6 | 36.0 | 0.0 | 31.7 | | LnGrp LOS | В | Α | A | В | В | В | С | Α | С | D | Α | <u>C</u> | | Approach Vol, veh/h | | 793 | | | 717 | | | 31 | | | 150 | | | Approach Delay, s/veh | | 5.4 | | | 14.7 | | | 32.2 | | | 35.7 | | | Approach LOS | | Α | | | В | | | С | | | D | | | Timer - Assigned Phs | | 2 | | 4 | | 6 | | 8 | | | | | | Phs Duration (G+Y+Rc), s | | 69.5 | | 20.5 | | 69.5 | | 20.5 | | | | | | Change Period (Y+Rc), s | | * 5.1 | | 5.7 | | * 5.1 | | 5.7 | | | | | | Max Green Setting (Gmax), s | | * 44 | | 35.6 | | * 44 | | 35.6 | | | | | | Max Q Clear Time (g_c+l1), s | | 15.2 | | 10.5 | | 20.4 | | 3.7 | | | | | | Green Ext Time (p_c), s | | 4.7 | | 0.4 | | 5.4 | | 0.1 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 12.5 | | | | | | | | | | | HCM 6th LOS | | | В | | | | | | | | | | | Notos | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ۶ | → | * | • | ← | 4 | 1 | † | <i>></i> | / | + | ✓ | |------------------------------|-----|----------|------|------|------------|------|------|----------|-------------|----------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | | | | ተ ኈ | | | ↑ | | | | 7 | | Traffic Volume (veh/h) | 0 | 0 | 0 | 0 | 674 | 75 | 0 | 48 | 0 | 0 | 0 | 334 | | Future Volume (veh/h) | 0 | 0 | 0 | 0 | 674 | 75 | 0 | 48 | 0 | 0 | 0 | 334 | | Initial Q (Qb), veh | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | | | | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | | | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | | | | 0 | 1870 | 1870 | 0 | 1870 | 0 | 0 | 0 | 1870 | | Adj Flow Rate, veh/h | | | | 0 | 749 | 72 | 0 | 53 | 0 | 0 | 0 | 320 | | Peak Hour Factor | | | | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | | Percent Heavy Veh, % | | | | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 2 | | Cap, veh/h | | | | 0 | 0 | 0 | 0 | 91 | 0 | 0 | 0 | 0 | | Arrive On Green | | | | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | | Sat Flow, veh/h | | | | | 0 | | 0 | 1870 | 0 | | 0 | | | Grp Volume(v), veh/h | | | | | 0.0 | | 0 | 53 | 0 | | 0.0 | | | Grp Sat Flow(s),veh/h/ln | | | | | | | 0 | 1870 | 0 | | | | | Q Serve(g_s), s | | | | | | | 0.0 | 1.7 | 0.0 | | | | | Cycle Q Clear(g_c), s | | | | | | | 0.0 | 1.7 | 0.0 | | | | | Prop In Lane | | | | | | | 0.00 | | 0.00 | | | | | Lane Grp Cap(c), veh/h | | | | | | | 0 | 91 | 0 | | | | | V/C Ratio(X) | | | | | | | 0.00 | 0.58 | 0.00 | | | | | Avail Cap(c_a), veh/h | | | | | | | 0 | 823 | 0 | | | | | HCM Platoon Ratio | | | | | | | 1.00 | 1.00 | 1.00 | | | | | Upstream Filter(I) | | | | | | | 0.00 | 1.00 | 0.00 | | | | | Uniform Delay (d), s/veh | | | | | | | 0.0 | 27.9 | 0.0 | | | | | Incr Delay (d2), s/veh | | | | | | | 0.0 | 5.7 | 0.0 | | | | | Initial Q Delay(d3),s/veh | | | | | | | 0.0 | 0.0 | 0.0 | | | | | %ile BackOfQ(95%),veh/ln | | | | | | | 0.0 | 1.5 | 0.0 | | | | | Unsig. Movement Delay, s/veh | | | | | | | 0.0 | 22.0 | 0.0 | | | | | LnGrp Delay(d),s/veh | | | | | | | 0.0 | 33.6 | 0.0 | | | | | LnGrp LOS | | | | | | | A | C | A | | | | | Approach Vol, veh/h | | | | | | | | 53 | | | | | | Approach Delay, s/veh | | | | | | | | 33.6 | | | | | | Approach LOS | | | | | | | | С | | | | | | Timer - Assigned Phs | | | | | | | | 8 | | | | | | Phs Duration (G+Y+Rc), s | | | | | | | | 6.6 | | | | | | Change Period (Y+Rc), s | | | | | | | | 3.7 | | | | | | Max Green Setting (Gmax), s | | | | | | | | 26.4 | | | | | | Max Q Clear Time (g_c+l1), s | | | | | | | | 3.7 | | | | | | Green Ext Time (p_c), s | | | | | | | | 0.2 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 33.6 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 9 | | • | → | • | • | ← | • | • | † | ~ | > | ļ | 4 | |------------------------------|------|----------|------|-------|------------|------|------|------------|------|-------------|----------|----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | ሻ | ∱ ∱ | | 7 | ተ ኈ | | ሻ | ^ | 7 | | Traffic Volume (veh/h) | 107 | 611 | 181 | 198 | 392 | 145 | 211 | 734 | 330 | 132 | 422 | 114 | | Future Volume (veh/h) | 107 | 611 | 181 | 198 | 392 | 145 | 211 | 734 | 330 | 132 | 422 | 114 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.99 | 1.00 | | 0.99 | 1.00 | | 0.99 | 1.00 | | 0.99 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 111 | 636 | 69 | 206 | 408 | 107 | 220 | 765 | 285 | 138 | 440 | 46 | | Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 368 | 1038 | 601 | 341 | 891 | 231 | 476 | 868 | 323 | 262 | 1662 | 610 | | Arrive On Green | 0.06 | 0.29 | 0.29 | 0.09 | 0.32 | 0.32 | 0.18 | 0.69 | 0.69 | 0.07 | 0.33 | 0.33 | | Sat Flow, veh/h | 1781 | 3554 | 1574 | 1781 | 2788 | 724 | 1781 | 2528 | 942 | 1781 | 5106 | 1573 | | Grp Volume(v), veh/h | 111 | 636 | 69 | 206 | 259 | 256 | 220 | 538 | 512 | 138 | 440 | 46 | | Grp Sat Flow(s), veh/h/ln | 1781 | 1777 | 1574 | 1781 | 1777 | 1734 | 1781 | 1777 | 1693 | 1781 | 1702 | 1573 | | Q Serve(g_s), s | 3.9 | 13.9 | 2.6 | 7.2 | 10.4 | 10.6 | 7.8 | 21.6 | 21.6 | 4.6 | 5.7 | 1.7 | | Cycle Q Clear(g_c), s | 3.9 | 13.9 | 2.6 | 7.2 | 10.4 | 10.6 | 7.8 | 21.6 | 21.6 | 4.6 | 5.7 | 1.7 | | Prop In Lane | 1.00 | 13.9 | 1.00 | 1.00 | 10.4 | 0.42 | 1.00 | 21.0 | 0.56 | 1.00 | 5.1 | 1.00 | | | 368 | 1038 | 601 | 341 | 568 | 554 | 476 | 610 | 581 | 262 | 1662 | 610 | | Lane Grp Cap(c), veh/h | 0.30 | | 0.11 | | | | | 0.88 | 0.88 | | | 0.08 | | V/C Ratio(X) | | 0.61 | | 0.60 | 0.46 | 0.46 | 0.46 | | | 0.53 | 0.26 | | | Avail Cap(c_a), veh/h | 416 | 1038 | 601 | 341 | 568 | 554 | 476 | 610 | 581 | 294 | 1662 | 610 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 0.96 | 0.96 | 0.96 | 1.00 | 1.00 | 1.00 | 0.89 | 0.89 | 0.89 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 20.5 | 27.5 | 18.0 | 20.8 | 24.4 | 24.5 | 16.2 | 12.6 | 12.6 | 20.8 | 22.4 | 17.4 | | Incr Delay (d2), s/veh | 0.4 | 2.6 | 0.4 | 3.0 | 2.6 | 2.8 | 0.6 | 15.1 | 15.8 | 1.6 | 0.4 | 0.2 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 2.8 | 9.9 | 1.7 | 5.6 | 8.1 | 8.1 | 4.8 | 10.5 | 10.2 | 3.4 | 4.1 | 1.1 | | Unsig. Movement Delay, s/veh | | | | | | | | | | | | | | LnGrp Delay(d),s/veh | 20.9 | 30.0 | 18.4 | 23.8 | 27.0 | 27.2 | 16.8 | 27.8 | 28.5 | 22.4 | 22.8 | 17.7 | | LnGrp LOS | С | С | В | С | С | С | В | С | С | С | С | <u>B</u> | | Approach Vol, veh/h | | 816 | | | 721 | | | 1270 | | | 624 | | | Approach Delay, s/veh | | 27.8 | | | 26.2 | | | 26.2 | | | 22.3 | | | Approach LOS | | С | | | С | | | С | | | С | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 12.0 | 34.3 | 9.5 | 34.2 | 10.4 | 35.9 | 12.0 | 31.7 | | | | | | Change Period (Y+Rc), s | 4.0 | * 5 | 4.0 | * 5.4 | 4.0 | * 5 | 4.0 | * 5.4 | | | | | | Max Green Setting (Gmax), s | 8.0 | * 29 | 8.0 | * 26 | 8.0 | * 29 | 8.0 | * 26 | | | | | | Max Q Clear Time (g_c+l1), s | 9.8 | 7.7 | 5.9 | 12.6 | 6.6 | 23.6 | 9.2 | 15.9 | | | | | | Green Ext Time (p_c), s | 0.0 | 3.0 | 0.0 | 2.5 | 0.0 | 3.1 | 0.0 | 3.1 | | | | | | | 0.0 | 0.0 | 0.0 | 2.0 | 0.0 | 0.1 | 0.0 | 0.1 | | | | | | Intersection Summary | | | 05.0 | | | | | | | | | | | HCM 6th Ctrl Delay | | | 25.9 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | | Notos |
| | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ۶ | → | • | • | ← | • | • | † | ~ | / | ļ | 4 | |------------------------------|-----------|-----------|------------|-----------|------------|-----------|----------|-------------|------|------------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | + | 7 | * | • | 7 | ሻ | ^ | 7 | ሻ | ተተተ | 7 | | Traffic Volume (veh/h) | 294 | 61 | 99 | 44 | 57 | 92 | 57 | 902 | 37 | 44 | 538 | 236 | | Future Volume (veh/h) | 294 | 61 | 99 | 44 | 57 | 92 | 57 | 902 | 37 | 44 | 538 | 236 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.96 | 0.91 | | 0.89 | 0.99 | | 0.95 | 0.98 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 306 | 64 | 69 | 46 | 59 | 5 | 59 | 940 | 22 | 46 | 560 | 0 | | Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 459 | 518 | 598 | 213 | 187 | 165 | 643 | 2143 | 929 | 354 | 2367 | 0.00 | | Arrive On Green | 0.13 | 0.28 | 0.29 | 0.12 | 0.10 | 0.12 | 0.13 | 0.80 | 0.82 | 0.96 | 0.93 | 0.00 | | Sat Flow, veh/h | 3456 | 1870 | 1519 | 1146 | 1870 | 1418 | 1781 | 3554 | 1505 | 574 | 5106 | 1585 | | Grp Volume(v), veh/h | 306 | 64 | 69 | 46 | 59 | 5 | 59 | 940 | 22 | 46 | 560 | 0 | | Grp Sat Flow(s),veh/h/ln | 1728 | 1870 | 1519 | 1146 | 1870 | 1418 | 1781 | 1777 | 1505 | 574 | 1702 | 1585 | | Q Serve(g_s), s | 7.6 | 2.3 | 2.6 | 3.3 | 2.6 | 0.3 | 1.2 | 7.3 | 0.2 | 0.4 | 0.9 | 0.0 | | Cycle Q Clear(g_c), s | 7.6 | 2.3 | 2.6 | 3.3 | 2.6 | 0.3 | 1.2 | 7.3 | 0.2 | 0.4 | 0.9 | 0.0 | | Prop In Lane | 1.00 | 540 | 1.00 | 1.00 | 407 | 1.00 | 1.00 | 0440 | 1.00 | 1.00 | 0007 | 1.00 | | Lane Grp Cap(c), veh/h | 459 | 518 | 598 | 213 | 187 | 165 | 643 | 2143 | 929 | 354 | 2367 | | | V/C Ratio(X) | 0.67 | 0.12 | 0.12 | 0.22 | 0.32 | 0.03 | 0.09 | 0.44 | 0.02 | 0.13 | 0.24 | | | Avail Cap(c_a), veh/h | 829 | 802 | 829 | 265 | 270 | 228 | 704 | 2143 | 929 | 354 | 2367 | 0.00 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.33 | 1.33 | 1.33 | 2.00 | 2.00 | 2.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.89 | 0.89 | 0.89 | 0.94 | 0.94 | 0.00 | | Uniform Delay (d), s/veh | 37.1 | 24.4 | 17.6 | 36.6 | 37.7 | 35.3 | 7.3 | 4.3 | 3.1 | 1.0 | 1.8 | 0.0 | | Incr Delay (d2), s/veh | 1.7 | 0.1 | 0.1 | 0.5 | 1.0 | 0.1 | 0.1 | 0.6 | 0.0 | 0.7 | 0.2 | 0.0 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0
1.6 | 0.0 | 0.0
2.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
0.2 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 5.9 | 1.8 | 1.0 | 1.7 | 2.2 | 0.2 | 0.7 | 3.6 | 0.1 | 0.2 | 0.6 | 0.0 | | Unsig. Movement Delay, s/veh | 38.8 | 24.5 | 17.6 | 37.1 | 38.6 | 35.3 | 7.3 | 4.8 | 3.1 | 1.8 | 2.0 | 0.0 | | LnGrp Delay(d),s/veh | 36.6
D | 24.5
C | 17.0
B | 37.1
D | 30.0
D | 33.3
D | 7.3
A | 4.0
A | | 1.0
A | 2.0
A | 0.0 | | LnGrp LOS | U | | D | U | 110 | U | A | | A | A | | A | | Approach Vol, veh/h | | 439 | | | 37.8 | | | 1021
5.0 | | | 606 | А | | Approach LOS | | 33.4
C | | | 37.0
D | | | | | | 2.0
A | | | Approach LOS | | C | | | U | | | А | | | А | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | | 6 | | 8 | | | | | | Phs Duration (G+Y+Rc), s | 12.5 | 47.0 | 16.0 | 14.5 | | 59.6 | | 30.4 | | | | | | Change Period (Y+Rc), s | 5.6 | * 5.3 | 5.6 | 5.5 | | * 5.3 | | 5.5 | | | | | | Max Green Setting (Gmax), s | 10.0 | * 25 | 20.0 | 13.0 | | * 41 | | 38.6 | | | | | | Max Q Clear Time (g_c+I1), s | 3.2 | 2.9 | 9.6 | 5.3 | | 9.3 | | 4.6 | | | | | | Green Ext Time (p_c), s | 0.0 | 7.9 | 0.8 | 0.2 | | 14.1 | | 0.6 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 11.5 | | | | | | | | | | | HCM 6th LOS | | | В | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | | • | → | • | • | ← | • | 4 | † | ~ | / | ļ | 4 | |--|--------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 14.54 | 1111 | 7 | ሻ | 1111 | 7 | 7 | ^ | 7 | ሻሻ | 4₽ | 7 | | Traffic Volume (veh/h) | 458 | 1334 | 32 | 74 | 983 | 465 | 24 | 42 | 41 | 542 | 35 | 285 | | Future Volume (veh/h) | 458 | 1334 | 32 | 74 | 983 | 465 | 24 | 42 | 41 | 542 | 35 | 285 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 0.97 | 1.00 | | 0.95 | 1.00 | | 0.89 | 1.00 | | 0.97 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 467 | 1361 | 15 | 76 | 1003 | 439 | 24 | 43 | 1 | 553 | 36 | 60 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 1100 | 3694 | 886 | 98 | 1925 | 691 | 67 | 133 | 53 | 812 | 284 | 234 | | Arrive On Green | 0.64 | 1.00 | 1.00 | 0.02 | 0.10 | 0.10 | 0.04 | 0.04 | 0.04 | 0.15 | 0.15 | 0.15 | | Sat Flow, veh/h | 3456 | 6434 | 1544 | 1781 | 6434 | 1506 | 1781 | 3554 | 1414 | 5344 | 1870 | 1538 | | Grp Volume(v), veh/h | 467 | 1361 | 15 | 76 | 1003 | 439 | 24 | 43 | 1 | 553 | 36 | 60 | | Grp Sat Flow(s),veh/h/ln | 1728 | 1609 | 1544 | 1781 | 1609 | 1506 | 1781 | 1777 | 1414 | 1781 | 1870 | 1538 | | Q Serve(g_s), s | 8.1 | 0.0 | 0.0 | 5.1 | 17.8 | 27.3 | 1.6 | 1.4 | 0.1 | 11.7 | 2.0 | 4.1 | | Cycle Q Clear(g_c), s | 8.1 | 0.0 | 0.0 | 5.1 | 17.8 | 27.3 | 1.6 | 1.4 | 0.1 | 11.7 | 2.0 | 4.1 | | Prop In Lane | 1.00 | 0004 | 1.00 | 1.00 | 4005 | 1.00 | 1.00 | 400 | 1.00 | 1.00 | 004 | 1.00 | | Lane Grp Cap(c), veh/h | 1100 | 3694 | 886 | 98 | 1925 | 691 | 67 | 133 | 53 | 812 | 284 | 234 | | V/C Ratio(X) | 0.42 | 0.37 | 0.02 | 0.78 | 0.52 | 0.64 | 0.36 | 0.32 | 0.02 | 0.68 | 0.13 | 0.26 | | Avail Cap(c_a), veh/h | 1100 | 3694 | 886 | 212 | 2000 | 709 | 169 | 338 | 134 | 1256 | 440 | 361 | | HCM Platoon Ratio | 2.00 | 2.00 | 2.00
0.93 | 0.33 | 0.33 | 0.33
1.00 | 1.00 | 1.00
1.00 | 1.00 | 1.00
0.98 | 1.00 | 1.00 | | Upstream Filter(I) | 0.93
16.3 | 0.93 | 0.93 | 1.00
58.2 | 1.00
45.9 | 32.9 | 1.00
56.4 | 56.3 | 1.00
55.6 | 48.1 | 0.98
44.0 | 0.98
44.9 | | Uniform Delay (d), s/veh
Incr Delay (d2), s/veh | 0.2 | 0.0 | 0.0 | 12.2 | 1.0 | 4.4 | 3.3 | 1.4 | 0.1 | 2.1 | 0.4 | 1.2 | | Initial Q Delay(d3),s/veh | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4 | 0.0 | | %ile BackOfQ(95%),veh/ln | 4.8 | 0.0 | 0.0 | 4.8 | 12.4 | 21.3 | 1.4 | 1.2 | 0.0 | 9.1 | 1.7 | 3.0 | | Unsig. Movement Delay, s/veh | | 0.1 | 0.0 | 4.0 | 12.4 | 21.0 | 1.4 | 1.2 | 0.1 | 9.1 | 1.7 | 3.0 | | LnGrp Delay(d),s/veh | 16.6 | 0.3 | 0.0 | 70.4 | 46.9 | 37.3 | 59.6 | 57.7 | 55.8 | 50.3 | 44.4 | 46.1 | | LnGrp LOS | В | Α | Α | 70.4
E | 70.5
D | D | 55.0
E | 57.7
E | 55.6
E | D | D | 70.1
D | | Approach Vol, veh/h | | 1843 | | | 1518 | | | 68 | | | 649 | | | Approach Delay, s/veh | | 4.4 | | | 45.3 | | | 58.3 | | | 49.6 | | | Approach LOS | | Α. | | | 45.5
D | | | 50.5
E | | | 43.0
D | | | | | | | | | | | | | | D | | | Timer - Assigned Phs | 1 | 2 | | 4 | 5 | 6 | | 8 | | | | | | Phs Duration (G+Y+Rc), s | 10.6 | 74.3 | | 10.7 | 43.6 | 41.3 | | 24.4 | | | | | | Change Period (Y+Rc), s | * 4 | 5.4 | | * 6.2 | 5.4 | * 5.4 | | 6.2 | | | | | | Max Green Setting (Gmax), s | * 14 | 44.3 | | * 11 | 21.3 | * 37 | | 28.2 | | | | | | Max Q Clear Time (g_c+l1), s | 7.1 | 2.0 | | 3.6 | 10.1 | 29.3 | | 13.7 | | | | | | Green Ext Time (p_c), s | 0.1 | 27.0 | | 0.1 | 1.3 | 6.6 | | 4.5 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 27.7 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | Synchro 10 Report LAWA ATMP Project Page 12 Fehr & Peers User approved volume balancing among the lanes for turning movement. * HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ۶ | → | \rightarrow | • | ← | • | • | † | / | > | ļ | 4 | |------------------------------|----------|--------------|---------------|------|--------------|-------|-------|------------|------|-------------|----------|----------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | ### # | | ሻ | ### # | | ሻሻ | ተ ኈ | | ሻሻ | ^ | 7 | | Traffic Volume (veh/h) | 117 | 2071 | 500 | 90 | 1071 | 124 | 360 | 507 | 144 | 96 | 498 | 143 | | Future Volume (veh/h) | 117 | 2071 | 500 | 90 | 1071 | 124 | 360 | 507 | 144 | 96 | 498 | 143 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow,
veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 123 | 2180 | 526 | 95 | 1127 | 131 | 379 | 534 | 127 | 101 | 524 | 54 | | Peak Hour Factor | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 440 | 2228 | 529 | 128 | 1491 | 172 | 474 | 641 | 152 | 250 | 590 | 655 | | Arrive On Green | 0.49 | 0.85 | 0.85 | 0.02 | 0.08 | 0.08 | 0.14 | 0.22 | 0.22 | 0.07 | 0.17 | 0.17 | | Sat Flow, veh/h | 1781 | 5231 | 1241 | 1781 | 5893 | 680 | 3456 | 2851 | 675 | 3456 | 3554 | 1585 | | Grp Volume(v), veh/h | 123 | 2008 | 698 | 95 | 921 | 337 | 379 | 332 | 329 | 101 | 524 | 54 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1609 | 1647 | 1781 | 1609 | 1748 | 1728 | 1777 | 1749 | 1728 | 1777 | 1585 | | Q Serve(g_s), s | 4.9 | 44.1 | 49.5 | 6.4 | 22.4 | 22.6 | 12.8 | 21.4 | 21.6 | 3.4 | 17.3 | 0.0 | | Cycle Q Clear(g_c), s | 4.9 | 44.1 | 49.5 | 6.4 | 22.4 | 22.6 | 12.8 | 21.4 | 21.6 | 3.4 | 17.3 | 0.0 | | Prop In Lane | 1.00 | | 0.75 | 1.00 | | 0.39 | 1.00 | | 0.39 | 1.00 | | 1.00 | | Lane Grp Cap(c), veh/h | 440 | 2055 | 701 | 128 | 1221 | 442 | 474 | 400 | 393 | 250 | 590 | 655 | | V/C Ratio(X) | 0.28 | 0.98 | 1.00 | 0.74 | 0.75 | 0.76 | 0.80 | 0.83 | 0.84 | 0.40 | 0.89 | 0.08 | | Avail Cap(c_a), veh/h | 440 | 2055 | 701 | 163 | 1407 | 510 | 847 | 580 | 571 | 317 | 622 | 669 | | HCM Platoon Ratio | 2.00 | 2.00 | 2.00 | 0.33 | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 0.87 | 0.87 | 0.87 | 0.98 | 0.98 | 0.98 | 1.00 | 1.00 | 1.00 | 0.86 | 0.86 | 0.86 | | Uniform Delay (d), s/veh | 24.1 | 8.4 | 8.8 | 57.5 | 51.4 | 51.4 | 50.2 | 44.3 | 44.4 | 53.2 | 49.0 | 21.4 | | Incr Delay (d2), s/veh | 0.3 | 13.9 | 30.6 | 12.4 | 4.3 | 11.5 | 3.2 | 6.7 | 7.2 | 0.3 | 12.6 | 0.0 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 3.5 | 9.4 | 13.8 | 6.1 | 15.3 | 17.7 | 9.5 | 15.1 | 15.1 | 2.6 | 13.0 | 1.6 | | Unsig. Movement Delay, s/veh | 211 | | | | | | | | | | 21.2 | 21.1 | | LnGrp Delay(d),s/veh | 24.4 | 22.2 | 39.3 | 69.8 | 55.6 | 62.9 | 53.3 | 51.0 | 51.6 | 53.5 | 61.6 | 21.4 | | LnGrp LOS | <u>C</u> | С | D | E | E | E | D | D | D | D | E | <u>C</u> | | Approach Vol, veh/h | | 2829 | | | 1353 | | | 1040 | | | 679 | | | Approach Delay, s/veh | | 26.5 | | | 58.4 | | | 52.0 | | | 57.2 | | | Approach LOS | | С | | | E | | | D | | | E | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 14.2 | 56.9 | 23.0 | 25.9 | 35.5 | 35.7 | 15.4 | 33.5 | | | | | | Change Period (Y+Rc), s | 5.6 | * 5.8 | * 6.5 | 6.0 | 5.8 | * 5.3 | * 6.7 | * 6.5 | | | | | | Max Green Setting (Gmax), s | 11.0 | * 35 | * 29 | 21.0 | 11.0 | * 35 | * 11 | * 39 | | | | | | Max Q Clear Time (g_c+I1), s | 8.4 | 51.5 | 14.8 | 19.3 | 6.9 | 24.6 | 5.4 | 23.6 | | | | | | Green Ext Time (p_c), s | 0.0 | 0.0 | 1.1 | 0.6 | 0.1 | 5.7 | 0.1 | 3.4 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 41.9 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | ၨ | → | \rightarrow | • | ← | • | 1 | † | / | > | ļ | 4 | |------------------------------|-----------------------|-----------|---------------|------------------|-----------|------|-----------|-----------|-----------|-------------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 75 | ተተተ | 7 | ሻ | 4111 | | ሻ | ^ | 77 | * | ^ | 77 | | Traffic Volume (veh/h) | 126 | 1343 | 402 | 84 | 685 | 219 | 98 | 374 | 654 | 239 | 713 | 236 | | Future Volume (veh/h) | 126 | 1343 | 402 | 84 | 685 | 219 | 98 | 374 | 654 | 239 | 713 | 236 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 134 | 1429 | 356 | 89 | 729 | 185 | 104 | 398 | 640 | 254 | 759 | 68 | | Peak Hour Factor | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 378 | 2448 | 827 | 195 | 2410 | 592 | 238 | 902 | 778 | 301 | 1018 | 912 | | Arrive On Green | 0.04 | 0.32 | 0.31 | 0.04 | 0.46 | 0.45 | 0.06 | 0.25 | 0.24 | 0.18 | 0.57 | 0.54 | | Sat Flow, veh/h | 1781 | 5106 | 1585 | 1781 | 5191 | 1275 | 1781 | 3554 | 2790 | 1781 | 3554 | 2790 | | Grp Volume(v), veh/h | 134 | 1429 | 356 | 89 | 676 | 238 | 104 | 398 | 640 | 254 | 759 | 68 | | Grp Sat Flow(s), veh/h/ln | 1781 | 1702 | 1585 | 1781 | 1609 | 1641 | 1781 | 1777 | 1395 | 1781 | 1777 | 1395 | | Q Serve(g_s), s | 4.8 | 28.1 | 19.5 | 3.2 | 10.5 | 11.1 | 5.2 | 11.3 | 25.8 | 11.0 | 19.1 | 1.3 | | Cycle Q Clear(g_c), s | 4.8 | 28.1 | 19.5 | 3.2 | 10.5 | 11.1 | 5.2 | 11.3 | 25.8 | 11.0 | 19.1 | 1.3 | | Prop In Lane | 1.00 | 20.1 | 1.00 | 1.00 | 10.0 | 0.78 | 1.00 | 11.0 | 1.00 | 1.00 | 10.1 | 1.00 | | Lane Grp Cap(c), veh/h | 378 | 2448 | 827 | 195 | 2240 | 762 | 238 | 902 | 778 | 301 | 1018 | 912 | | V/C Ratio(X) | 0.35 | 0.58 | 0.43 | 0.46 | 0.30 | 0.31 | 0.44 | 0.44 | 0.82 | 0.84 | 0.75 | 0.07 | | Avail Cap(c_a), veh/h | 440 | 2448 | 827 | 284 | 2240 | 762 | 297 | 918 | 791 | 301 | 1018 | 912 | | HCM Platoon Ratio | 0.67 | 0.67 | 0.67 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | | Upstream Filter(I) | 0.93 | 0.93 | 0.93 | 1.00 | 1.00 | 1.00 | 0.89 | 0.89 | 0.89 | 0.64 | 0.64 | 0.64 | | Uniform Delay (d), s/veh | 16.9 | 30.7 | 23.6 | 20.8 | 20.0 | 20.7 | 32.7 | 37.6 | 40.5 | 31.9 | 22.4 | 17.4 | | Incr Delay (d2), s/veh | 0.5 | 1.0 | 1.5 | 1.7 | 0.3 | 1.1 | 1.1 | 0.3 | 6.2 | 13.2 | 2.0 | 0.0 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 3.7 | 17.8 | 12.5 | 2.5 | 7.1 | 7.9 | 4.1 | 8.3 | 14.0 | 9.1 | 8.7 | 0.8 | | Unsig. Movement Delay, s/veh | | 17.0 | 12.0 | 2.0 | 7.1 | 1.5 | 7.1 | 0.0 | 14.0 | 3.1 | 0.1 | 0.0 | | LnGrp Delay(d),s/veh | 17.4 | 31.7 | 25.1 | 22.4 | 20.4 | 21.8 | 33.8 | 37.9 | 46.7 | 45.0 | 24.3 | 17.4 | | LnGrp LOS | 17. 4
B | 31.7
C | 23.1
C | 22. 4 | 20.4
C | Z1.0 | 33.0
C | 57.9
D | 40.7
D | 45.0
D | 24.3
C | В | | | <u> </u> | | | | | | | | <u> </u> | <u>U</u> | | | | Approach Vol, veh/h | | 1919 | | | 1003 | | | 1142 | | | 1081 | | | Approach Delay, s/veh | | 29.5 | | | 20.9
C | | | 42.5
D | | | 28.8
C | | | Approach LOS | | С | | | C | | | D | | | C | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 9.0 | 61.5 | 11.1 | 38.4 | 10.8 | 59.7 | 15.0 | 34.5 | | | | | | Change Period (Y+Rc), s | 4.0 | 6.0 | 4.0 | * 6 | 4.0 | 6.0 | 4.0 | * 6 | | | | | | Max Green Setting (Gmax), s | 11.0 | 49.0 | 11.0 | * 29 | 11.0 | 41.0 | 11.0 | * 29 | | | | | | Max Q Clear Time (g_c+l1), s | 5.2 | 30.1 | 7.2 | 21.1 | 6.8 | 13.1 | 13.0 | 27.8 | | | | | | Green Ext Time (p_c), s | 0.1 | 11.2 | 0.1 | 3.1 | 0.1 | 6.7 | 0.0 | 0.7 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 30.5 | | | | | | | | | | | HCM 6th LOS | | | C | | | | | | | | | | | Notes | | | - | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | € | • | † | / | > | | | | |----------------------------------|-----------|------------|----------|-------------|------------------|-------|--| | Movement WBL | WBR | NBT | NBR | SBL | SBT | | | | ane Configurations | 77 | ↑ ↑ | | ሻሻ | † † | | | | raffic Volume (vph) 0 | | 627 | 35 | 367 | 945 | | | | uture Volume (vph) 0 | 511 | 627 | 35 | 367 | 945 | | | | leal Flow (vphpl) 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | otal Lost time (s) | 4.0 | 4.0 | | 4.9 | 4.0 | | | | ane Util. Factor | 0.88 | 0.95 | | 0.97 | 0.95 | | | | rpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | | | lpb, ped/bikes | 1.00 | 1.00 | | 1.00 | 1.00 | | | | rt | 0.85 | 0.99 | | 1.00 | 1.00 | | | | t Protected | 1.00 | 1.00 | | 0.95 | 1.00 | | | | atd. Flow (prot) | 2787 | 3508 | | 3433 | 3539 | | | | t Permitted | 1.00 | 1.00 | | 0.95 | 1.00 | | | | atd. Flow (perm) | 2787 | 3508 | | 3433 | 3539 | | | | eak-hour factor, PHF 0.92 | | 0.92 | 0.92 | 0.92 | 0.92 | | | | dj. Flow (vph) 0 | | 682 | 38 | 399 | 1027 | | | | ΓOR Reduction (vph) 0 | | 9 | 0 | 0 | 0 | | | | ane Group Flow (vph) 0 | | 711 | 0 | 399 | 1027 | | | | onfl. Peds. (#/hr) | | | 12 | 12 | | | | | rn Type | Perm | NA | | Prot | NA | | | | otected Phases | . 0 | 2 | | 8 | 10. | | | | rmitted Phases | 8 | _ | | | 28 | | | | tuated Green, G (s) | 8.8 | 26.0 | | 8.8 | 45.0 | | | | ective Green, g (s) | 9.7 | 27.3 | | 8.8 | 41.4 | | | | tuated g/C Ratio | 0.22 | 0.61 | | 0.20 | 0.92 | | | | earance Time (s) | 4.9 | 5.3 | | 4.9 | 0.02 | | | | hicle Extension (s) | 3.0 | 3.8 | | 3.0 | | | | | ine Grp Cap (vph) | 600 | 2128 | | 671 | 3255 | | | | Ratio Prot | 000 | c0.20 | | c0.12 | 0200 | | | | Ratio Perm | 0.08 | 00.20 | | 00.12 | 0.29 | | | | c Ratio | 0.38 | 0.33 | | 0.59 | 0.23 | | | | niform Delay, d1 | 15.1 | 4.4 | | 16.5 | 0.32 | | | | ogression Factor | 1.00 | 1.00 | | 1.00 | 1.00 | | | | cremental Delay, d2 | 0.4 | 0.4 | | 1.4 | 0.1 | | | | elay (s) | 15.5 | 4.8 | | 17.9 | 0.3 | | | | vel of Service | 10.0
B | 4.0
A | | 17.3
B | Α | | | | oproach Delay (s)
15.5 | _ | 4.8 | | | 5.2 | | | | pproach LOS B | | A | | | A | | | | tersection Summary | | | | | | | | | CM 2000 Control Delay | | 7.2 | H | CM 2000 | Level of Service |
Α | | | CM 2000 Volume to Capacity ratio | | 0.40 | | | | | | | ctuated Cycle Length (s) | | 45.0 | Sı | um of lost | t time (s) | 8.9 | | | ntersection Capacity Utilization | | 46.2% | IC | CU Level | of Service | Α | | | nalysis Period (min) | | 15 | | | | | | | Critical Lane Group | | | | | | | | # Attachment D: Existing 2019 Synchro Queue Reports | | • | - | • | • | ← | • | 4 | † | ~ | - | ļ | 4 | |-------------------------|------|------|------|------|----------|------|------|----------|------|------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Group Flow (vph) | 206 | 368 | 98 | 87 | 719 | 416 | 108 | 1777 | 71 | 146 | 1184 | 130 | | v/c Ratio | 0.48 | 0.53 | 0.23 | 0.19 | 0.69 | 0.66 | 0.44 | 1.01 | 0.07 | 0.61 | 0.67 | 0.19 | | Control Delay | 52.2 | 45.5 | 2.9 | 34.0 | 41.5 | 21.4 | 24.3 | 62.5 | 0.1 | 34.7 | 36.1 | 0.8 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 52.2 | 45.5 | 2.9 | 34.0 | 41.5 | 21.4 | 24.3 | 62.5 | 0.1 | 34.7 | 36.1 | 0.8 | | Queue Length 50th (ft) | 77 | 136 | 0 | 49 | 256 | 123 | 46 | ~543 | 0 | 63 | 287 | 0 | | Queue Length 95th (ft) | 113 | 173 | 14 | 91 | 325 | 239 | 86 | #683 | 0 | 134 | 358 | 3 | | Internal Link Dist (ft) | | 508 | | | 604 | | | 745 | | | 470 | | | Turn Bay Length (ft) | 278 | | 145 | 245 | | 140 | 225 | | 100 | 205 | | 200 | | Base Capacity (vph) | 532 | 1279 | 665 | 464 | 1067 | 638 | 255 | 1766 | 965 | 243 | 1774 | 685 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.39 | 0.29 | 0.15 | 0.19 | 0.67 | 0.65 | 0.42 | 1.01 | 0.07 | 0.60 | 0.67 | 0.19 | Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ၨ | → | • | • | ← | • | † | / | \ | Ţ | 4 | | |-------------------------|------|----------|------|------|------|------|----------|----------|----------|------|------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT | SBR | | | Lane Group Flow (vph) | 67 | 228 | 104 | 312 | 354 | 99 | 1733 | 179 | 36 | 1483 | 84 | | | v/c Ratio | 0.24 | 0.38 | 0.22 | 0.97 | 0.50 | 0.38 | 0.64 | 0.18 | 0.17 | 0.63 | 0.09 | | | Control Delay | 23.5 | 34.1 | 9.0 | 74.8 | 32.4 | 12.8 | 26.6 | 14.2 | 10.5 | 20.8 | 1.5 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 23.5 | 34.1 | 9.0 | 74.8 | 32.4 | 12.8 | 26.6 | 14.2 | 10.5 | 20.8 | 1.5 | | | Queue Length 50th (ft) | 27 | 60 | 12 | 148 | 90 | 33 | 372 | 75 | 8 | 231 | 0 | | | Queue Length 95th (ft) | 54 | 90 | 44 | #283 | 127 | m48 | 431 | m95 | 22 | 309 | 13 | | | Internal Link Dist (ft) | | 517 | | | 373 | | 888 | | | 745 | | | | Turn Bay Length (ft) | 70 | | | 200 | | 160 | | 100 | 230 | | 100 | | | Base Capacity (vph) | 297 | 1101 | 487 | 321 | 1086 | 277 | 2721 | 1003 | 283 | 2340 | 901 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.23 | 0.21 | 0.21 | 0.97 | 0.33 | 0.36 | 0.64 | 0.18 | 0.13 | 0.63 | 0.09 | | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | ၨ | → | • | ← | 4 | † | / | - | ļ | 4 | | |-------------------------|------|----------|------|------|------|----------|----------|------|-------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | NBR | SBL | SBT | SBR | | | Lane Group Flow (vph) | 13 | 282 | 160 | 885 | 223 | 1896 | 32 | 111 | 1718 | 40 | | | v/c Ratio | 0.07 | 0.34 | 0.44 | 0.86 | 0.81 | 0.85 | 0.04 | 0.45 | 0.85 | 0.05 | | | Control Delay | 16.5 | 21.0 | 23.0 | 37.8 | 42.1 | 31.0 | 0.5 | 17.3 | 24.4 | 1.7 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 16.5 | 21.0 | 23.0 | 37.8 | 42.1 | 31.0 | 0.5 | 17.3 | 24.4 | 1.7 | | | Queue Length 50th (ft) | 4 | 47 | 58 | 233 | 77 | ~408 | 0 | 11 | 375 | 3 | | | Queue Length 95th (ft) | 15 | 80 | 99 | #321 | #206 | #550 | 3 | m32 | m#465 | m4 | | | Internal Link Dist (ft) | | 512 | | 372 | | 535 | | | 888 | | | | Turn Bay Length (ft) | 90 | | 175 | | 240 | | 100 | 140 | | 60 | | | Base Capacity (vph) | 237 | 1056 | 365 | 1053 | 282 | 2218 | 848 | 285 | 2020 | 794 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.05 | 0.27 | 0.44 | 0.84 | 0.79 | 0.85 | 0.04 | 0.39 | 0.85 | 0.05 | | Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | • | 4 | ļ | 1 | |-------------------------|------|------|------|------| | Lane Group | EBR | NBL | SBT | SBR | | Lane Group Flow (vph) | 1653 | 1633 | 2105 | 5 | | v/c Ratio | 0.94 | 0.58 | 0.77 | 0.00 | | Control Delay | 35.8 | 20.3 | 24.6 | 0.0 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 35.8 | 20.3 | 24.6 | 0.0 | | Queue Length 50th (ft) | 339 | 187 | 290 | 0 | | Queue Length 95th (ft) | #460 | 221 | 337 | 0 | | Internal Link Dist (ft) | | | 206 | | | Turn Bay Length (ft) | | | | | | Base Capacity (vph) | 1766 | 2805 | 2719 | 1583 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.94 | 0.58 | 0.77 | 0.00 | | Intersection Summary | | | | | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | • | † | / | ļ | ✓ | |-----------------------|-----|-----|----------|----------|------|-----| | Lane Group | EBR | WBR | NBT | NBR | SBT | SBR | | Lane Group Flow (vph) | 35 | 457 | 3738 | 292 | 2565 | 146 | | Intersection Summary | | | | | | | | | • | ← | • | † | ļ | 4 | |-------------------------|------|----------|------|----------|------|------| | Lane Group | WBL | WBT | WBR | NBT | SBT | SBR | | Lane Group Flow (vph) | 296 | 307 | 552 | 3453 | 2386 | 90 | | v/c Ratio | 0.62 | 0.62 | 0.76 | 0.87 | 0.60 | 0.13 | | Control Delay | 38.4 | 38.2 | 41.8 | 22.5 | 15.0 | 2.6 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 38.4 | 38.2 | 41.8 | 22.5 | 15.0 | 2.6 | | Queue Length 50th (ft) | 184 | 190 | 187 | 608 | 308 | 0 | | Queue Length 95th (ft) | 243 | 250 | 222 | 732 | 379 | 22 | | Internal Link Dist (ft) | | 627 | | 442 | 579 | | | Turn Bay Length (ft) | 200 | | 230 | | | | | Base Capacity (vph) | 551 | 572 | 839 | 3987 | 3997 | 708 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.54 | 0.54 | 0.66 | 0.87 | 0.60 | 0.13 | | Intersection Summary | | | | | | | | Lane Group | WBR | NBT | |-------------------------|-------|-------| | Lane Group Flow (vph) | 2664 | 2292 | | v/c Ratio | 1.36 | 1.23 | | Control Delay | 186.2 | 136.2 | | Queue Delay | 0.0 | 0.0 | | Total Delay | 186.2 | 136.2 | | Queue Length 50th (ft) | ~881 | ~595 | | Queue Length 95th (ft) | #995 | #691 | | Internal Link Dist (ft) | | 157 | | Turn Bay Length (ft) | | | | Base Capacity (vph) | 1965 | 1864 | | Starvation Cap Reductn | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | | Storage Cap Reductn | 0 | 0 | | Reduced v/c Ratio | 1.36 | 1.23 | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 7 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ၨ | → | • | • | ← | • | 4 | † | ~ | - | ļ | | |-------------------------|------|----------|------|------|------|------|------|----------|------|------|------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | | | Lane Group Flow (vph) | 175 | 308 | 148 | 238 | 262 | 371 | 97 | 1673 | 491 | 537 | 2677 | | | v/c Ratio | 0.59 | 0.49 | 0.45 | 0.78 | 0.41 | 0.62 | 0.71 | 0.77 | 0.58 | 0.85 | 0.75 | | | Control Delay | 47.9 | 39.2 | 9.8 | 59.0 | 37.9 | 24.6 | 69.5 | 25.7 | 11.3 | 49.7 | 17.9 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 47.9 | 39.2 | 9.8 | 59.0 | 37.9 | 24.6 | 69.5 | 25.7 | 11.3 | 49.7 | 17.9 | | | Queue Length 50th (ft) | 50 | 61 | 0 | 69 | 51 | 144 | 55 | 290 | 75 | 152 | 331 | | | Queue Length 95th (ft) | 83 | 86 | 46 | #127 | 74 | 224 | #132 | 375 | 188 | #231 | 417 | | | Internal Link Dist (ft) | | 494 | | | 5267 | | | 596 | | | 388 | | | Turn Bay Length (ft) | 240 | | 120 | 270 | | 350 | 300 | | 150 | 220 | | | | Base Capacity (vph) | 305 | 904 | 407 | 305 | 904 | 606 | 137 | 2165 | 840 | 648 | 3563 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.57 | 0.34 | 0.36 | 0.78 | 0.29 | 0.61 | 0.71 | 0.77 | 0.58 | 0.83 | 0.75 | | ^{# 95}th percentile volume exceeds capacity, queue may be
longer. Queue shown is maximum after two cycles. | | ۶ | → | • | • | ← | • | 4 | ~ | > | ↓ | | |-------------------------|------|----------|------|------|------|------|------|------|-------------|----------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBR | SBL | SBT | | | Lane Group Flow (vph) | 80 | 360 | 8 | 8 | 1404 | 106 | 9 | 28 | 16 | 46 | | | v/c Ratio | 0.28 | 0.12 | 0.01 | 0.01 | 0.45 | 0.08 | 0.07 | 0.05 | 0.12 | 0.16 | | | Control Delay | 5.2 | 1.7 | 0.0 | 3.3 | 7.5 | 2.1 | 38.6 | 0.2 | 39.8 | 23.5 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 5.2 | 1.7 | 0.0 | 3.3 | 7.5 | 2.1 | 38.6 | 0.2 | 39.8 | 23.5 | | | Queue Length 50th (ft) | 9 | 18 | 0 | 1 | 326 | 11 | 5 | 0 | 9 | 5 | | | Queue Length 95th (ft) | 27 | 28 | 0 | m2 | m288 | m12 | 19 | 0 | 28 | 22 | | | Internal Link Dist (ft) | | 833 | | | 938 | | | | | 389 | | | Turn Bay Length (ft) | 200 | | 140 | 180 | | 180 | 200 | 200 | 130 | | | | Base Capacity (vph) | 286 | 3091 | 1368 | 872 | 3091 | 1337 | 599 | 863 | 594 | 1187 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.28 | 0.12 | 0.01 | 0.01 | 0.45 | 0.08 | 0.02 | 0.03 | 0.03 | 0.04 | | | Intersection Summary | | | | | | | | | | | | m Volume for 95th percentile queue is metered by upstream signal. LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 9 | | ← | † | 1 | |-------------------------|------|----------|------| | Lane Group | WBT | NBT | SBR | | Lane Group Flow (vph) | 994 | 65 | 254 | | v/c Ratio | 0.45 | 0.17 | 0.64 | | Control Delay | 7.0 | 18.0 | 24.2 | | Queue Delay | 0.0 | 0.0 | 0.0 | | Total Delay | 7.0 | 18.0 | 24.2 | | Queue Length 50th (ft) | 76 | 19 | 68 | | Queue Length 95th (ft) | 153 | 39 | 115 | | Internal Link Dist (ft) | 299 | 136 | | | Turn Bay Length (ft) | | | | | Base Capacity (vph) | 2205 | 819 | 733 | | Starvation Cap Reductn | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | | Reduced v/c Ratio | 0.45 | 0.08 | 0.35 | | Intersection Summary | | | | | | • | - | • | • | ← | 4 | † | \ | ļ | 4 | | |-------------------------|------|------|------|------|----------|------|----------|----------|------|------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | SBL | SBT | SBR | | | Lane Group Flow (vph) | 32 | 176 | 152 | 220 | 1307 | 255 | 1117 | 59 | 703 | 143 | | | v/c Ratio | 0.15 | 0.17 | 0.22 | 0.42 | 1.20 | 0.74 | 0.89 | 0.26 | 0.42 | 0.21 | | | Control Delay | 15.5 | 24.1 | 9.2 | 19.5 | 130.0 | 25.9 | 32.6 | 16.4 | 24.7 | 7.9 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 15.5 | 24.1 | 9.2 | 19.5 | 130.0 | 25.9 | 32.6 | 16.4 | 24.7 | 7.9 | | | Queue Length 50th (ft) | 10 | 40 | 22 | 77 | ~469 | 79 | 250 | 18 | 113 | 20 | | | Queue Length 95th (ft) | 27 | 66 | 60 | 128 | #620 | #144 | #456 | 39 | 148 | 52 | | | Internal Link Dist (ft) | | 938 | | | 1550 | | 1066 | | 410 | | | | Turn Bay Length (ft) | 195 | | | 250 | | 130 | | 270 | | 150 | | | Base Capacity (vph) | 244 | 1034 | 692 | 518 | 1085 | 344 | 1250 | 243 | 1655 | 708 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.13 | 0.17 | 0.22 | 0.42 | 1.20 | 0.74 | 0.89 | 0.24 | 0.42 | 0.20 | | Synchro 10 Report LAWA ATMP Project Page 11 Fehr & Peers Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ၨ | → | • | • | ← | • | 4 | † | ~ | \ | ļ | 1 | |-------------------------|------|----------|------|------|----------|------|------|----------|------|----------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Group Flow (vph) | 81 | 51 | 49 | 31 | 51 | 206 | 98 | 1069 | 39 | 71 | 627 | 398 | | v/c Ratio | 0.20 | 0.11 | 0.08 | 0.19 | 0.25 | 0.54 | 0.17 | 0.47 | 0.04 | 0.28 | 0.24 | 0.40 | | Control Delay | 37.2 | 24.7 | 5.1 | 37.5 | 39.4 | 11.1 | 8.9 | 11.0 | 1.4 | 29.7 | 21.4 | 14.9 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 37.2 | 24.7 | 5.1 | 37.5 | 39.4 | 11.1 | 8.9 | 11.0 | 1.4 | 29.7 | 21.4 | 14.9 | | Queue Length 50th (ft) | 21 | 22 | 2 | 16 | 27 | 0 | 17 | 130 | 0 | 37 | 115 | 109 | | Queue Length 95th (ft) | 43 | 47 | 19 | 41 | 59 | 59 | 57 | 268 | m3 | 85 | 146 | 169 | | Internal Link Dist (ft) | | 708 | | | 482 | | | 724 | | | 1066 | | | Turn Bay Length (ft) | 120 | | 95 | 110 | | 55 | 155 | | 105 | 145 | | 220 | | Base Capacity (vph) | 823 | 799 | 624 | 213 | 269 | 427 | 576 | 2266 | 987 | 258 | 2590 | 991 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.10 | 0.06 | 0.08 | 0.15 | 0.19 | 0.48 | 0.17 | 0.47 | 0.04 | 0.28 | 0.24 | 0.40 | m Volume for 95th percentile queue is metered by upstream signal. | | • | - | • | • | • | • | • | † | ~ | - | ļ | 4 | |-------------------------|-------|------|------|------|------|------|------|----------|------|------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Group Flow (vph) | 649 | 853 | 19 | 35 | 1635 | 753 | 26 | 44 | 57 | 139 | 101 | 258 | | v/c Ratio | 1.43 | 0.27 | 0.02 | 0.32 | 0.66 | 0.68 | 0.18 | 0.20 | 0.21 | 0.19 | 0.15 | 0.46 | | Control Delay | 241.9 | 12.6 | 0.6 | 60.2 | 31.0 | 11.0 | 54.0 | 55.0 | 1.7 | 36.8 | 37.8 | 7.1 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 241.9 | 12.6 | 0.6 | 60.2 | 31.0 | 11.0 | 54.0 | 55.0 | 1.7 | 36.8 | 37.8 | 7.1 | | Queue Length 50th (ft) | ~354 | 120 | 0 | 26 | 307 | 203 | 19 | 17 | 0 | 49 | 36 | 0 | | Queue Length 95th (ft) | #473 | 158 | 3 | 59 | 364 | 349 | 48 | 36 | 0 | 80 | 63 | 66 | | Internal Link Dist (ft) | | 1149 | | | 735 | | | 552 | | | 579 | | | Turn Bay Length (ft) | 300 | | 175 | 280 | | 200 | 120 | | 120 | 290 | | 260 | | Base Capacity (vph) | 453 | 3139 | 894 | 151 | 2490 | 1111 | 190 | 315 | 316 | 758 | 715 | 581 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 1.43 | 0.27 | 0.02 | 0.23 | 0.66 | 0.68 | 0.14 | 0.14 | 0.18 | 0.18 | 0.14 | 0.44 | Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ᄼ | → | • | ← | 4 | † | - | ↓ | 4 | | |-------------------------|------|----------|------|-------|------|----------|------|----------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | SBL | SBT | SBR | | | Lane Group Flow (vph) | 110 | 1420 | 103 | 2488 | 794 | 825 | 77 | 377 | 187 | | | v/c Ratio | 0.48 | 0.75 | 0.75 | 1.49 | 0.94 | 0.69 | 0.30 | 0.72 | 0.30 | | | Control Delay | 52.6 | 37.1 | 84.9 | 260.9 | 64.5 | 37.1 | 55.7 | 56.8 | 10.2 | | | Queue Delay | 0.0 | 0.2 | 0.0 | 1.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 52.6 | 37.3 | 84.9 | 262.8 | 64.5 | 37.1 | 55.7 | 56.8 | 10.3 | | | Queue Length 50th (ft) | 80 | 293 | 82 | ~814 | 311 | 291 | 29 | 147 | 29 | | | Queue Length 95th (ft) | 135 | 336 | #159 | #886 | #402 | 335 | 53 | 188 | 74 | | | Internal Link Dist (ft) | | 362 | | 982 | | 573 | | 2599 | | | | Turn Bay Length (ft) | 250 | | 155 | | 278 | | 124 | | 100 | | | Base Capacity (vph) | 243 | 1898 | 141 | 1667 | 855 | 1219 | 323 | 628 | 617 | | | Starvation Cap Reductn | 0 | 68 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 647 | 0 | 0 | 0 | 0 | 13 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.45 | 0.78 | 0.73 | 2.44 | 0.93 | 0.68 | 0.24 | 0.60 | 0.31 | | Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | → | • | • | ← | • | † | / | \ | ↓ | 1 | | |-------------------------|------|----------|------|------|--------|------|----------|------|----------|----------|------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT | SBR | | | Lane Group Flow (vph) | 77 | 442 | 291 | 484 | 2094 | 167 | 817 | 194 | 109 | 399 | 278 | | | v/c Ratio | 0.43 | 0.23 | 0.36 | 0.75 | 1.13dr | 0.66 | 0.90 | 0.14 | 0.78 | 0.44 | 0.27 | | | Control Delay | 20.8 | 31.6 | 24.7 | 21.3 | 21.2 | 46.5 | 57.3 | 2.4 | 67.6 | 40.0 | 19.0 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 20.8 | 31.6 | 24.7 | 21.3 | 21.2 | 46.5 | 57.3 | 2.4 | 67.6 | 40.0 | 19.0 | | | Queue Length 50th (ft) | 40 | 104 | 148 | 194 | 308 | 95 | 322 | 0 | 59 | 117 | 48 | | | Queue Length 95th (ft) | 71 | 118 | 188 | 275 | 368 | 153 | #433 | 20 | #130 | 166 | 78 | | | Internal Link Dist (ft) | | 1446 | | | 821 | | 732 | | | 845 | | | | Turn Bay Length (ft) | 225 | | | 175 | | 160 | | 80 | 235 | | 120 | | | Base Capacity (vph) | 431 | 1959 | 817 | 671 | 3103 | 253 | 914 | 1484 | 139 | 914 | 1425 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | |
Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.18 | 0.23 | 0.36 | 0.72 | 0.67 | 0.66 | 0.89 | 0.13 | 0.78 | 0.44 | 0.20 | | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. dr Defacto Right Lane. Recode with 1 though lane as a right lane. | • | † | \ | 1 | |------|---|---|--| | | ' | | * | | WBR | NBT | SBL | SBT | | 85 | 1139 | 492 | 620 | | 0.12 | 0.53 | 0.73 | 0.18 | | 1.0 | 6.2 | 25.5 | 0.1 | | 0.0 | 0.0 | 0.0 | 0.0 | | 1.0 | 6.2 | 25.5 | 0.1 | | 0 | 70 | 62 | 0 | | 3 | 106 | #117 | 0 | | | 232 | | 732 | | | | 450 | | | 734 | 2140 | 671 | 3539 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | | 0.12 | 0.53 | 0.73 | 0.18 | | | | | | | | 85
0.12
1.0
0.0
1.0
0
3 | 85 1139 0.12 0.53 1.0 6.2 0.0 0.0 1.0 6.2 0 70 3 106 232 734 2140 0 0 0 0 0 0 | 85 1139 492 0.12 0.53 0.73 1.0 6.2 25.5 0.0 0.0 0.0 1.0 6.2 25.5 0 70 62 3 106 #117 232 450 734 2140 671 0 0 0 0 0 0 0 0 | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ၨ | → | • | • | • | • | 4 | † | ~ | \ | ļ | 1 | |-------------------------|------|----------|------|------|------|------|------|----------|------|----------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Group Flow (vph) | 249 | 822 | 130 | 114 | 643 | 206 | 190 | 1367 | 114 | 373 | 1735 | 341 | | v/c Ratio | 0.54 | 0.69 | 0.21 | 0.39 | 0.61 | 0.35 | 0.79 | 0.81 | 0.15 | 1.53 | 1.03 | 0.51 | | Control Delay | 52.5 | 37.4 | 4.0 | 41.5 | 39.0 | 8.9 | 49.8 | 41.9 | 1.4 | 287.7 | 68.5 | 15.6 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 52.5 | 37.4 | 4.0 | 41.5 | 39.0 | 8.9 | 49.8 | 41.9 | 1.4 | 287.7 | 68.5 | 15.6 | | Queue Length 50th (ft) | 93 | 278 | 0 | 65 | 219 | 18 | 95 | 363 | 0 | ~363 | ~555 | 78 | | Queue Length 95th (ft) | 134 | 345 | 33 | 114 | 286 | 77 | #216 | 428 | 14 | #560 | #659 | 174 | | Internal Link Dist (ft) | | 508 | | | 604 | | | 745 | | | 470 | | | Turn Bay Length (ft) | 278 | | 145 | 245 | | 140 | 225 | | 100 | 205 | | 200 | | Base Capacity (vph) | 532 | 1279 | 665 | 291 | 1078 | 602 | 244 | 1687 | 759 | 243 | 1692 | 666 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.47 | 0.64 | 0.20 | 0.39 | 0.60 | 0.34 | 0.78 | 0.81 | 0.15 | 1.53 | 1.03 | 0.51 | Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | → | • | • | • | • | † | / | - | Ţ | 4 | | |-------------------------|------|----------|------|------|------|------|----------|----------|------|------|------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT | SBR | | | Lane Group Flow (vph) | 109 | 363 | 102 | 208 | 289 | 148 | 1243 | 247 | 84 | 1622 | 105 | | | v/c Ratio | 0.35 | 0.55 | 0.21 | 0.75 | 0.43 | 0.55 | 0.50 | 0.26 | 0.30 | 0.72 | 0.12 | | | Control Delay | 24.7 | 36.2 | 8.5 | 41.7 | 28.5 | 19.9 | 28.7 | 17.0 | 11.8 | 23.6 | 2.5 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 24.7 | 36.2 | 8.5 | 41.7 | 28.5 | 19.9 | 28.7 | 17.0 | 11.8 | 23.6 | 2.5 | | | Queue Length 50th (ft) | 45 | 100 | 11 | 91 | 64 | 69 | 262 | 88 | 19 | 269 | 0 | | | Queue Length 95th (ft) | 78 | 135 | 41 | #148 | 96 | m117 | 316 | 168 | 43 | 360 | 22 | | | Internal Link Dist (ft) | | 517 | | | 373 | | 888 | | | 745 | | | | Turn Bay Length (ft) | 70 | | | 200 | | 160 | | 100 | 230 | | 100 | | | Base Capacity (vph) | 320 | 1101 | 501 | 279 | 1086 | 275 | 2476 | 959 | 331 | 2243 | 866 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.34 | 0.33 | 0.20 | 0.75 | 0.27 | 0.54 | 0.50 | 0.26 | 0.25 | 0.72 | 0.12 | | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 2 ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | ၨ | → | • | ← | • | † | - | - | ↓ | 4 | | |-------------------------|------|----------|------|------|------|----------|------|-------|----------|------|--| | Lane Group | EBL | EBT | WBL | WBT | NBL | NBT | NBR | SBL | SBT | SBR | | | Lane Group Flow (vph) | 48 | 433 | 164 | 419 | 160 | 1445 | 48 | 224 | 1626 | 43 | | | v/c Ratio | 0.18 | 0.65 | 0.64 | 0.53 | 0.62 | 0.65 | 0.06 | 0.81 | 0.71 | 0.05 | | | Control Delay | 21.7 | 33.6 | 49.4 | 32.9 | 24.7 | 22.1 | 1.5 | 43.4 | 13.7 | 1.4 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 21.7 | 33.6 | 49.4 | 32.9 | 24.7 | 22.1 | 1.5 | 43.4 | 13.7 | 1.4 | | | Queue Length 50th (ft) | 19 | 105 | 78 | 71 | 37 | 228 | 0 | 48 | 304 | 2 | | | Queue Length 95th (ft) | 40 | 143 | 124 | 82 | 104 | 310 | 9 | m#155 | 397 | m4 | | | Internal Link Dist (ft) | | 512 | | 372 | | 535 | | | 888 | | | | Turn Bay Length (ft) | 90 | | 175 | | 240 | | 100 | 140 | | 60 | | | Base Capacity (vph) | 290 | 1050 | 256 | 1059 | 283 | 2239 | 841 | 283 | 2295 | 867 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.17 | 0.41 | 0.64 | 0.40 | 0.57 | 0.65 | 0.06 | 0.79 | 0.71 | 0.05 | | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | • | • | Į. | 4 | |-------------------------|------|------|------|------| | | | · | | | | Lane Group | EBR | NBL | SBT | SBR | | Lane Group Flow (vph) | 1916 | 1450 | 1979 | 24 | | v/c Ratio | 1.08 | 0.52 | 0.73 | 0.02 | | Control Delay | 74.5 | 19.3 | 23.5 | 0.0 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 74.5 | 19.3 | 23.5 | 0.0 | | Queue Length 50th (ft) | ~482 | 160 | 265 | 0 | | Queue Length 95th (ft) | #587 | 191 | 309 | 0 | | Internal Link Dist (ft) | | | 206 | | | Turn Bay Length (ft) | | | | | | Base Capacity (vph) | 1767 | 2805 | 2719 | 1583 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 1.08 | 0.52 | 0.73 | 0.02 | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 4 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | • | † | / | ļ | 4 | |-----------------------|-----|-----|----------|----------|------|-----| | Lane Group | EBR | WBR | NBT | NBR | SBT | SBR | | Lane Group Flow (vph) | 65 | 538 | 3042 | 337 | 2694 | 223 | | Intersection Summary | | | | | | | | | • | ← | • | † | ļ | ✓ | |-------------------------|------|------|------|----------|------|------| | Lane Group | WBL | WBT | WBR | NBT | SBT | SBR | | Lane Group Flow (vph) | 350 | 356 | 321 | 3114 | 2702 | 98 | | v/c Ratio | 0.77 | 0.77 | 0.47 | 0.76 | 0.66 | 0.14 | | Control Delay | 49.6 | 49.4 | 37.0 | 18.1 | 15.6 | 2.6 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 49.6 | 49.4 | 37.0 | 18.1 | 15.6 | 2.6 | | Queue Length 50th (ft) | 244 | 248 | 106 | 472 | 364 | 0 | | Queue Length 95th (ft) | 365 | 369 | 161 | 595 | 462 | 23 | | Internal Link Dist (ft) | | 627 | | 442 | 579 | | | Turn Bay Length (ft) | 200 | | 230 | | | | | Base Capacity (vph) | 551 | 562 | 832 | 4074 | 4082 | 691 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.64 | 0.63 | 0.39 | 0.76 | 0.66 | 0.14 | | Intersection Summary | | | | | | | | Lane Group | WBR | NBT | |-------------------------|------|------| | Lane Group Flow (vph) | 1960 | 2102 | | v/c Ratio | 1.06 | 1.03 | | Control Delay | 63.1 | 57.0 | | Queue Delay | 0.0 | 0.0 | | Total Delay | 63.1 | 57.0 | | Queue Length 50th (ft) | ~543 | ~475 | | Queue Length 95th (ft) | #658 | #570 | | Internal Link Dist (ft) | | 157 | | Turn Bay Length (ft) | | | | Base Capacity (vph) | 1845 | 2034 | | Starvation Cap Reductn | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | | Storage Cap Reductn | 0 | 0 | | Reduced v/c Ratio | 1.06 | 1.03 | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 7 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | _ | \sim | | ← | • | • | † | - | \ | 1 | | |-------------------------|------|------|--------|------|------|------|-------|----------|------|----------|------|--| | | | | • | • | | | ١, | ' | ′ | | • | | | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | | | Lane Group Flow (vph) | 135 | 367 | 136 | 160 | 308 | 409 | 175 | 1495 | 786 | 473 | 2206 | | | v/c Ratio | 0.46 | 0.53 | 0.39 | 0.54 | 0.44 | 0.67 | 1.28 | 0.70 | 0.95 | 0.77 | 0.66 | | | Control Delay | 44.5 | 38.6 | 7.5 | 46.5 | 37.2 | 25.9 | 206.1 | 24.4 | 40.4 | 44.3 | 17.3
 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 44.5 | 38.6 | 7.5 | 46.5 | 37.2 | 25.9 | 206.1 | 24.4 | 40.4 | 44.3 | 17.3 | | | Queue Length 50th (ft) | 38 | 72 | 0 | 45 | 60 | 163 | ~127 | 252 | 306 | 131 | 250 | | | Queue Length 95th (ft) | 67 | 97 | 36 | 77 | 83 | 246 | #255 | 333 | #603 | 184 | 323 | | | Internal Link Dist (ft) | | 494 | | | 5267 | | | 596 | | | 388 | | | Turn Bay Length (ft) | 240 | | 120 | 270 | | 350 | 300 | | | 220 | | | | Base Capacity (vph) | 305 | 904 | 407 | 305 | 904 | 625 | 137 | 2137 | 826 | 648 | 3335 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.44 | 0.41 | 0.33 | 0.52 | 0.34 | 0.65 | 1.28 | 0.70 | 0.95 | 0.73 | 0.66 | | Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ۶ | - | • | • | ← | • | • | ~ | - | ↓ | | |-------------------------|------|------|------|------|------|------|------|------|------|----------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBR | SBL | SBT | | | Lane Group Flow (vph) | 86 | 706 | 2 | 2 | 643 | 102 | 22 | 59 | 140 | 67 | | | v/c Ratio | 0.16 | 0.28 | 0.00 | 0.00 | 0.25 | 0.09 | 0.10 | 0.15 | 0.62 | 0.11 | | | Control Delay | 6.1 | 5.5 | 0.0 | 5.0 | 3.7 | 1.2 | 30.7 | 8.0 | 46.7 | 0.3 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 6.1 | 5.5 | 0.0 | 5.0 | 3.7 | 1.2 | 30.7 | 8.0 | 46.7 | 0.3 | | | Queue Length 50th (ft) | 15 | 84 | 0 | 0 | 26 | 1 | 11 | 0 | 75 | 0 | | | Queue Length 95th (ft) | m40 | 124 | m0 | m1 | 71 | 10 | 30 | 0 | 125 | 0 | | | Internal Link Dist (ft) | | 833 | | | 938 | | | | | 389 | | | Turn Bay Length (ft) | 200 | | 140 | 180 | | 180 | 200 | 200 | 130 | | | | Base Capacity (vph) | 534 | 2544 | 1147 | 501 | 2544 | 1116 | 517 | 709 | 551 | 1269 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.16 | 0.28 | 0.00 | 0.00 | 0.25 | 0.09 | 0.04 | 0.08 | 0.25 | 0.05 | | | Intersection Summary | | | | | | | | | | | | m Volume for 95th percentile queue is metered by upstream signal. | | ← | † | 4 | |-------------------------|------|----------|------| | Lane Group | WBT | NBT | SBR | | Lane Group Flow (vph) | 832 | 53 | 371 | | v/c Ratio | 0.42 | 0.12 | 0.73 | | Control Delay | 8.8 | 14.4 | 23.7 | | Queue Delay | 0.0 | 0.0 | 0.0 | | Total Delay | 8.8 | 14.4 | 23.7 | | Queue Length 50th (ft) | 75 | 14 | 98 | | Queue Length 95th (ft) | 149 | 29 | 149 | | Internal Link Dist (ft) | 299 | 136 | | | Turn Bay Length (ft) | | | | | Base Capacity (vph) | 1986 | 819 | 745 | | Starvation Cap Reductn | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | | Reduced v/c Ratio | 0.42 | 0.06 | 0.50 | | Intersection Summary | | | | | | • | → | • | • | ← | 4 | † | \ | ļ | 4 | | |-------------------------|------|----------|------|------|----------|------|----------|----------|------|------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | SBL | SBT | SBR | | | Lane Group Flow (vph) | 111 | 636 | 189 | 206 | 559 | 220 | 1109 | 138 | 440 | 119 | | | v/c Ratio | 0.33 | 0.62 | 0.26 | 0.66 | 0.54 | 0.49 | 0.96 | 0.58 | 0.27 | 0.16 | | | Control Delay | 16.3 | 26.3 | 4.0 | 28.6 | 25.8 | 16.8 | 45.3 | 24.7 | 22.9 | 3.3 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 16.3 | 26.3 | 4.0 | 28.6 | 25.8 | 16.8 | 45.3 | 24.7 | 22.9 | 3.3 | | | Queue Length 50th (ft) | 29 | 132 | 10 | 72 | 124 | 81 | 336 | 43 | 67 | 0 | | | Queue Length 95th (ft) | 69 | 203 | 29 | #128 | 176 | 58 | #456 | 80 | 93 | 28 | | | Internal Link Dist (ft) | | 938 | | | 1550 | | 1066 | | 410 | | | | Turn Bay Length (ft) | 195 | | | 250 | | 130 | | 270 | | 150 | | | Base Capacity (vph) | 347 | 1034 | 730 | 310 | 1044 | 451 | 1158 | 243 | 1655 | 730 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.32 | 0.62 | 0.26 | 0.66 | 0.54 | 0.49 | 0.96 | 0.57 | 0.27 | 0.16 | | | Intersection Summary | | | | | | | | | | | | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | → | → | • | • | ← | • | • | † | / | - | ↓ | 1 | |-------------------------|----------|----------|------|------|------|------|------|----------|------|------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Group Flow (vph) | 306 | 64 | 103 | 46 | 59 | 96 | 59 | 940 | 39 | 46 | 560 | 246 | | v/c Ratio | 0.54 | 0.12 | 0.15 | 0.28 | 0.29 | 0.28 | 0.11 | 0.45 | 0.05 | 0.18 | 0.24 | 0.29 | | Control Delay | 37.7 | 20.7 | 6.3 | 40.0 | 40.2 | 2.8 | 15.6 | 18.0 | 3.7 | 28.1 | 22.3 | 13.0 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 37.7 | 20.7 | 6.3 | 40.0 | 40.2 | 2.8 | 15.6 | 18.0 | 3.7 | 28.1 | 22.3 | 13.0 | | Queue Length 50th (ft) | 82 | 26 | 14 | 24 | 32 | 0 | 18 | 196 | 0 | 20 | 95 | 0 | | Queue Length 95th (ft) | 118 | 49 | 34 | 56 | 67 | 7 | m46 | 287 | m9 | m50 | 138 | 92 | | Internal Link Dist (ft) | | 708 | | | 482 | | | 724 | | | 1066 | | | Turn Bay Length (ft) | 120 | | 95 | 110 | | 55 | 155 | | 105 | 145 | | 220 | | Base Capacity (vph) | 823 | 799 | 690 | 206 | 269 | 392 | 563 | 2097 | 842 | 259 | 2353 | 847 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.37 | 0.08 | 0.15 | 0.22 | 0.22 | 0.24 | 0.10 | 0.45 | 0.05 | 0.18 | 0.24 | 0.29 | m Volume for 95th percentile queue is metered by upstream signal. | | • | → | • | • | ← | • | • | † | ~ | \ | ļ | 4 | |-------------------------|------|----------|------|------|----------|------|------|----------|------|----------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Group Flow (vph) | 467 | 1361 | 33 | 76 | 1003 | 474 | 24 | 43 | 42 | 371 | 218 | 291 | | v/c Ratio | 0.76 | 0.47 | 0.04 | 0.52 | 0.46 | 0.49 | 0.23 | 0.20 | 0.17 | 0.54 | 0.32 | 0.51 | | Control Delay | 48.6 | 17.8 | 0.3 | 64.1 | 31.5 | 7.5 | 58.2 | 55.2 | 1.5 | 44.1 | 39.8 | 7.7 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 48.6 | 17.8 | 0.3 | 64.1 | 31.5 | 7.5 | 58.2 | 55.2 | 1.5 | 44.1 | 39.8 | 7.7 | | Queue Length 50th (ft) | 175 | 224 | 0 | 57 | 184 | 83 | 18 | 16 | 0 | 146 | 81 | 0 | | Queue Length 95th (ft) | #259 | 284 | 2 | 106 | 216 | 150 | 46 | 36 | 0 | 202 | 122 | 73 | | Internal Link Dist (ft) | | 1149 | | | 735 | | | 552 | | | 579 | | | Turn Bay Length (ft) | 300 | | 175 | 280 | | 200 | 120 | | 120 | 290 | | 260 | | Base Capacity (vph) | 628 | 2882 | 816 | 196 | 2183 | 988 | 168 | 336 | 298 | 715 | 722 | 583 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.74 | 0.47 | 0.04 | 0.39 | 0.46 | 0.48 | 0.14 | 0.13 | 0.14 | 0.52 | 0.30 | 0.50 | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | Lane Group EBL EBT WBL WBT NBL NBT SBL SBT SBI | |---| | Lane Group Flow (vph) 123 2706 95 1258 379 686 101 524 15 | | v/c Ratio 0.59 1.20 0.66 0.59 0.69 0.78 0.38 0.87 0.2 | | Control Delay 57.7 124.6 79.2 42.7 54.2 46.2 56.9 64.5 7. | | Queue Delay 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 | | Total Delay 57.7 124.6 79.2 42.8 54.2 46.2 56.9 64.5 7. | | Queue Length 50th (ft) 94 ~752 72 269 145 249 39 209 1 | | Queue Length 95th (ft) #204 #911 #147 273 184 298 67 #294 5 | | Internal Link Dist (ft) 362 982 573 2599 | | Turn Bay Length (ft) 250 155 278 124 10 | | Base Capacity (vph) 207 2254 151 2123 841 1139 314 619 63 | | Starvation Cap Reductn 0 31 0 0 0 0 0 | | Spillback Cap Reductn 0 0 0 98 0 0 0 | | Storage Cap Reductn 0 0 0 0 0 0 0 | | Reduced v/c Ratio 0.59 1.22 0.63 0.62 0.45 0.60 0.32 0.85 0.2 | LAWA ATMP Project Fehr & Peers Synchro 10 Report Page 14 Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ၨ | → | • | • | ← | • | † | / | - | ↓ | 4 | | |-------------------------|------|----------|------|------|------|------|----------|----------|-------|------|------|--| | Lane Group | EBL | EBT | EBR | WBL | WBT | NBL | NBT | NBR | SBL | SBT | SBR | | | Lane Group Flow (vph) | 134 | 1429 | 428 | 89 | 962 | 104 | 398 | 696 | 254 | 759 | 251 | | | v/c Ratio | 0.40 | 0.61 | 0.44 | 0.41 | 0.34 | 0.50 | 0.47 | 0.69 | 0.79 | 0.85 | 0.21 | | | Control Delay | 21.3 | 37.4 | 27.8 | 18.5 | 19.9 | 33.9 | 40.6 | 33.2 | 41.9 | 48.4 | 4.9 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 21.3 | 37.4 | 27.8 | 18.5 | 19.9 | 33.9 | 40.6 | 33.2 | 41.9 | 48.4 | 4.9 | | | Queue Length 50th (ft) | 74 | 383 | 251 | 31 | 126 | 53 | 137 | 228 | 137 | 268 | 6 | | | Queue Length 95th (ft) | 153 | 471 | 356 |
57 | 159 | 92 | 185 | 292 | m#166 | m314 | m18 | | | Internal Link Dist (ft) | | 1446 | | | 821 | | 732 | | | 845 | | | | Turn Bay Length (ft) | 225 | | | 175 | | 160 | | 80 | 235 | | 120 | | | Base Capacity (vph) | 355 | 2346 | 988 | 249 | 2861 | 229 | 914 | 1064 | 323 | 914 | 1208 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.38 | 0.61 | 0.43 | 0.36 | 0.34 | 0.45 | 0.44 | 0.65 | 0.79 | 0.83 | 0.21 | | ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | • | † | - | ↓ | |-------------------------|------|----------|------|----------| | Lane Group | WBR | NBT | SBL | SBT | | Lane Group Flow (vph) | 555 | 720 | 399 | 1027 | | v/c Ratio | 0.60 | 0.34 | 0.59 | 0.29 | | Control Delay | 7.5 | 4.7 | 20.7 | 0.2 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 7.5 | 4.7 | 20.7 | 0.2 | | Queue Length 50th (ft) | 16 | 37 | 48 | 0 | | Queue Length 95th (ft) | 52 | 58 | 82 | 0 | | Internal Link Dist (ft) | | 232 | | 732 | | Turn Bay Length (ft) | | | 450 | | | Base Capacity (vph) | 930 | 2137 | 671 | 3539 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.60 | 0.34 | 0.59 | 0.29 | | Intersection Summary | | | | | # **Appendix B: Cumulative Projects List** | | | | | | | | | | Estimat | ted Trip | Gener | ation | | | |-----|---|--------------|--|--------------------|---------------|----------|--------------|--------------|---------|-------------------|-------|-------|---------------------|-------| | No. | Project Location | Jurisdiction | Land Use | ITE
Land
Use | Size | Units | Daily | Trips | | day AN
our Tri | | | kday PN
lour Tri | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | In | Out | Total | | 1 | 4471 Inglewood Bl | Culver City | School | 537 | 800 | Students | 275 | | 55 | 45 | 100 | 31 | 36 | 67 | | 2 | 9919 Jefferson Bl | Culver City | Office | 710 | 62.560 | ksf | 609 | | 62 | 10 | 73 | 12 | 60 | 72 | | | | | Apartments | 220 | 98 | du | | | | | | | | | | 2 | 11924 Washington Bl | Culver City | Retail | 820 | 11.250 | ksf | 1,378 | | 36 | 47 | 83 | 70 | 53 | 123 | | | | | Restaurant | 932 | 3.750 | ksf | | | | | | | | | | 3 | 11259 Washington Bl | Culver City | Office | 710 | 4.022 | ksf | 39 | | 4 | 1 | 5 | 1 | 4 | 5 | | | 11201 Wk | C 1 C'1 | Apartments | 220 | 14 | du | 261 | | | _ | | 12 | 10 | 25 | | 4 | 11281 Washington Pl | Culver City | Retail | 820 | 4.897 | ksf | 261 | | 4 | 5 | 9 | 13 | 12 | 25 | | 5 | 6161 Centinela Bl | Culver City | Office | 710 | 281.194 | ksf | 2,739 | | 281 | 46 | 327 | 52 | 272 | 324 | | _ | C221 Bristal Blass | Culum City | Commercial | 820 | 20.767 | ksf | 2.705 | | 4.4 | 222 | 276 | 100 | 77 | 260 | | 6 | 6221 Bristol Pkwy | Culver City | Apartments | 220 | 712 | du | 2,795 | | 44 | 232 | 2/6 | 192 | 77 | 269 | | | | | Office | 710 | 106.000 | ksf | | | | | | | | | | 7 | 445 N Douglas Street [a] | El Segundo | Warehouse
Industrial Data
Center | 160 | 117.000 | ksf | 1,148 | 252 | 113 | 23 | 136 | 23 | 110 | 133 | | • | 2400 51 6 | El C | Office | 710 | 1,751.92
1 | ksf | 22.045 | 10.752 | 1.045 | 2.40 | 2.405 | 500 | 1 000 | 2.507 | | 8 | 2100 El Segundo Boulevard [a] | El Segundo | Warehouse | 150 | 74 | ksf | 22,815 | 10,753 | 1,845 | 340 | 2,185 | 599 | 1,998 | 2,597 | | | | | Retail | 820 | 148.960 | ksf | | | | | | | | | | 9 | 455 Continental Boulevard and
1955 E. Grand Avenue [a] | El Segundo | Office Tower | 710 | 300.000 | ksf | 2,922 | 663 | 299 | 49 | 348 | 55 | 290 | 345 | | 10 | 212E Campus Driva [a] | El Cogundo | Hotel | 310 | 121.450 | ksf | 1,634 | 1,135 | 98 | 33 | 131 | 49 | 97 | 146 | | 10 | 2125 Campus Drive [a] | El Segundo | Office | 710 | 63.550 | ksf | 1,034 | 1,135 | 90 | 33 | 131 | 49 | 91 | 140 | | | | | | | | | | ı | Estima | ted Trip | Genera | ation | | | |-----|--|--------------|---|--------------------|---------|-------|--------------|--------------|--------|-------------------|--------|-------|--------------------|-------| | No. | Project Location | Jurisdiction | Land Use | ITE
Land
Use | Size | Units | Daily | Trips | | day AN
our Tri | | | day PN
lour Tri | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | In | Out | Total | | 11 | 540 E Imperial Avenue | El Segundo | Apartments | 220 | 58 | units | 447 | 493 | 6 | 20 | 27 | 27 | 20 | 48 | | 12 | 500 S Douglas Street and 2330
Utah Avenue | El Segundo | Office | 710 | 80.000 | ksf | 779 | | 86 | 13 | 98 | 93 | 102 | 195 | | 13 | 123 Nevada Street | El Segundo | Condominiums | 221 | 4 | units | 22 | 20 | 1 | 1 | 2 | 1 | 1 | 2 | | 14 | 140 Sheldon Street | El Segundo | Warehouse | 150 | 7.116 | ksf | | | | | | | | | | 15 | 740 N. Sepulveda | El Segundo | Fast food restaurant with drive-through | 934 | 4.696 | ksf | | | | | | | | | | 16 | 707 Pacific Coast Highway | El Segundo | Hotel | 310 | 116 | rooms | 963 | 950 | 31 | 22 | 53 | 36 | 32 | 68 | | 17 | 1301 E. El Segundo Boulevard | El Segundo | Warehouse | 150 | 19.289 | ksf | | | | | | | | | | | 1301 E. El Segulido Bodievard | Li Seguildo | Office | 710 | 6.266 | ksf | | | | | | | | | | | | | Office | 710 | 240.000 | ksf | 2,338 | | 257 | 38 | 295 | 278 | 307 | 586 | | 18 | 2120 E. Rosecrans Avenue | El Segundo | Studio and
Production
Facilities | | 66.000 | ksf | | | | | | | | | | | | | Retail | 820 | 7.000 | ksf | 264 | 322 | 4 | 2 | 7 | 14 | 14 | 28 | | 19 | 400 S. PCH | El Segundo | Golf range | 430 | 71.000 | ksf | | | | | | | | | | 20 | 140 Oregon Street | El Segundo | Office | 710 | 70.000 | ksf | 682 | | 75 | 11 | 86 | 81 | 90 | 171 | | 21 | 401-615 N. PCH | El Segundo | Apartments | 220 | 263 | units | 2,025 | 2,236 | 29 | 92 | 121 | 124 | 92 | 216 | | | 401 013 W. 1 CH | Li Segurido | Retail | 820 | 11.000 | ksf | 415 | 506 | 7 | 4 | 10 | 21 | 22 | 43 | | 22 | 212 Eucalyptus Dr. | El Segundo | Office | 710 | 13.485 | ksf | 131 | | 14 | 2 | 17 | 16 | 17 | 33 | | | , , | J | Coffee shop | 936 | 0.634 | ksf | | | | | | | | | | 23 | 2221 E. Park Place | El Segundo | Office | 710 | 27.478 | ksf | 268 | | 29 | 4 | 34 | 32 | 35 | 67 | | 24 | 1225 E. Mariposa Avenue | El Segundo | Condominiums | 221 | 15 | units | 83 | 74 | 3 | 4 | 7 | 4 | 4 | 8 | | | | | | | | | | | Estima | ted Trip | Genera | ation | | | |-----|-------------------------------|--------------|--------------------------|--------------------|---------|---------------|--------------|--------------|--------|-------------------|--------|-----------|-------------------|-------| | No. | Project Location | Jurisdiction | Land Use | ITE
Land
Use | Size | Units | Daily | Trips | | day AN
our Tri | | | day PM
our Tri | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | In | Out | Total | | 25 | 14321 Van Ness Ave [a] | Gardena | Townhomes | 210 | 40 | townho
mes | 378 | 382 | 8 | 22 | 30 | 25 | 15 | 40 | | 26 | 1720 West 135th Street [a] | Gardena | Industrial | 110 | 100.438 | ksf | 498 | 200 | 62 | 8 | 70 | 8 | 55 | 63 | | 27 | 13919 Normandie Ave [a] | Gardena | Single Room
Occupancy | 220 | 20 | units | 146 | 163 | 2 | 7 | 9 | 7 | 4 | 11 | | 28 | 525 E Rosecrans Avenue | Gardena | Retail | 820 | 3.140 | ksf | 119 | 145 | 2 | 1 | 3 | 6 | 6 | 12 | | 29 | 4500 West 116th Street [a] | Hawthorne | Condominiums | 221 | 116 | units | 631 | 570 | 11 | 31 | 42 | 31 | 20 | 51 | | 20 | 12000 | 11- 11 | Apartments | 220 | 171 | units | 1.500 | 1 464 | F-1 | | 117 | <i>CC</i> | 67 | 122 | | 30 | 13806 Hawthorne Boulevard [a] | Hawthorne | Office | 710 | 32.500 | ksf | 1,569 | 1,464 | 51 | 66 | 117 | 66 | 67 | 133 | | 31 | Crenshaw Boulevard/Jack | Hawthorne | Dwelling Units | 220 | 230 | units | 2,099 | 2 225 | 4.4 | 99 | 142 | 103 | (2) | 1.00 | | 32 | Northop Avenue [c] | пажитотте | Restaurant | 932 | 3.700 | ksf | 2,099 | 2,325 | 44 | 99 | 143 | 103 | 62 | 165 | | 33 | 11519 Acacia Ave [a] | Hawthorne | Hotel | 310 | 119 | rooms | 995 | 975 | 33 | 23 | 56 | 36 | 35 | 71 | | 34 | 3222 W. 139th Street | Hawthorne | Condominiums | 221 | 7 | units | 39 | 34 | 1 | 2 | 3 | 2 | 2 | 4 | | 35 | 3670 W. Imperial Highway | Hawthorne | Condominiums | 221 | 96 | units | 528 | 470 | 19 | 24 | 43 | 24 | 24 | 48 | | 36 | 13403 Kornblum Avenue | Hawthorne | Condominiums | 221 | 12 | units | 66 | 59 | 2 | 3 | 5 | 3 | 3 | 6 | | 37 | 664 E. Manchester Terrace [a] | Inglewood | Condominiums | 221 | 4 | units | 22 | 20 | 0 | 1 | 1 | 1 | 1 | 2 | | 38 | 844 N. Centinela Avenue [a] | Inglewood | Apartments | 220 | 4 | units | 29 | 33 | 0 | 2 | 2 | 1 | 1 | 2 | | 39 | 501 E. 99th Street [a] | Inglewood | Condominiums | 221 | 12 | units | 65 | 59 | 1 | 3 | 4 | 3 | 2 | 5 | | 40 | 921 N. Edgewood Street [a] | Inglewood | Apartments | 220 | 38 | units | 278 | 309 | 4 | 13 | 17 | 13 | 8 | 21 | | 41 | 222 W Spruce Avenue [a] | Inglewood | Apartments | 220 | 10 | units | 73 | 81 | 1 | 4 | 5 | 4 | 2 | 6 | | 42 | 961 E 68th Street [a] | Inglewood | Condominiums | 221 | 3 | units | 16 | 15 | 0 | 1 | 1 | 1 | 0 | 1 | | 43 | 417 N Market Street [a] | Inglewood | Condominiums | 221 | 12 | units | 65 | 59 | 1 | 3 | 4 | 3 | 2 | 5 | | 44 | 819 E La Palma Drive [a] | Inglewood | Apartments | 220 | 5 | units | 37 | 41 | 0 | 2 | 2 | 2 | 1 | 3 | | | | | | | | | | ı | Estimat | ted Trip | Gener | ation | | | |-----|--|--------------|-------------------------------|--------------------|--------|--------|--------------|--------------|---------
--------------------------------|-------|-------|-------------------|-------| | No. | Project Location | Jurisdiction | Land Use | ITE
Land
Use | Size | Units | Daily | Trips | | day AN
our Tri _l | | | day PN
our Tri | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | In | Out | Total | | 45 | 814 N Market Street [a] | Inglewood | Congregate Living
Facility | 253 | 18 | beds | 36 | 49 | 1 | 0 | 1 | 2 | 1 | 3 | | 46 | 411 E Hazel Street [a] | Inglewood | Apartments | 220 | 18 | units | 132 | 147 | 2 | 6 | 8 | 6 | 4 | 10 | | 47 | 329 E. Hazel Street [a] | Inglewood | Condominiums | 221 | 4 | units | 22 | 20 | 0 | 1 | 1 | 1 | 1 | 2 | | 48 | 11111 S. Prairie Avenue [d] | Inglewood | Hotel | 310 | 120 | rooms | 1,003 | 983 | 33 | 23 | 56 | 37 | 35 | 72 | | 49 | 3920 W 108th Street [a] | Inglewood | Apartments | 220 | 3 | units | 22 | 24 | 0 | 1 | 1 | 1 | 1 | 2 | | 50 | 125 E. Spruce Avenue [a] | Inglewood | Apartments | 220 | 7 | units | 51 | 57 | 1 | 2 | 3 | 3 | 1 | 4 | | 51 | 704 N. Market Street [a] | Inglewood | Apartments | 220 | 12 | units | 88 | 98 | 1 | 5 | 6 | 4 | 3 | 7 | | 52 | 408 E. Warren Lane [a] | Inglewood | Commercial | 820 | 2.542 | ksf | 96 | 117 | 1 | 1 | 2 | 5 | 5 | 10 | | 53 | 508 S. Eucalyptus Avenue [a] | Inglewood | Senior Housing | 252 | 40 | units | 148 | 129 | 3 | 5 | 8 | 6 | 4 | 10 | | 54 | 417-433 Centinela Avenue [a] | Inglewood | Apartments | 220 | 116 | units | 849 | 944 | 12 | 41 | 53 | 41 | 24 | 65 | | 55 | 721 N. La Busa A | la alaa a al | Commercial | 820 | 1.312 | ksf | 4 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | | 22 | 721 N. La Brea Avenue [a] | Inglewood | Commercial | 820 | -1.210 | ksf | 4 | 5 | U | U | U | U | U | U | | 56 | 101,125,139,140,150 Market
Street [a] | Inglewood | Retail | 820 | 40.000 | ksf | 1,510 | 1,845 | 24 | 14 | 38 | 73 | 79 | 152 | | 57 | 113-133 Plymouth Street [a] | Inglewood | Townhomes | 210 | 20 | units | 189 | 191 | 4 | 11 | 15 | 13 | 7 | 20 | | 58 | 333 N. Prairie Avenue [a] | Inglewood | Townhomes | 210 | 310 | units | 2,926 | 2,957 | 57 | 172 | 229 | 193 | 114 | 307 | | 59 | 705-715 N. Centinela Avenue [a] | Inglewood | Self-Storage | 151 | 81.613 | ksf | 123 | 159 | 5 | 3 | 8 | 7 | 7 | 14 | | 60 | 3660 W. 107th Street [a] | Inglewood | Dwelling Units | 220 | 3 | units | 22 | 24 | 0 | 1 | 1 | 1 | 1 | 2 | | 61 | 614 E. Hyde Park Boulevard [a] | Inglewood | Congregate Living
Facility | 253 | 18 | beds | 36 | 49 | 1 | 0 | 1 | 2 | 1 | 3 | | 62 | 1050 S. Prairie Avenue [e] | Inglewood | Sports Stadium | N/A | 9,000 | spaces | 84,220 | 67,846 | 3,940 | 1,652 | 5,592 | 2,324 | 4,304 | 6,628 | | | | | diction Land Use Land Size Units Daily Trips Hour Trips | | | ation | | | | | | | | | |-----|--------------------------------------|--------------|---|------|----------|-------|--------------|--------------|-----|-----|-------|-----|--------------------|-------| | No. | Project Location | Jurisdiction | Land Use | | Size | Units | Daily | Trips | | | | | day PN
lour Tri | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | In | Out | Total | | | | | Venue | N/A | 6,000 | seats | | | | | | | | | | | | | Dwelling Units | 220 | 2,500 | units | | | | | | | | | | | | | Retail | 820 | 890.000 | ksf | | | | | | | | | | | | | Office | 710 | 780.000 | ksf | | | | | | | | | | | | | Hotel | 310 | 300 | rooms | | | | | | | | | | | | | Open Space | 411 | 1,089.00 | acres | | | | | | | | | | | | | Civic Site | 411 | 30.000 | ksf | | | | | | | | | | 63 | D3 SITE (La Brea | Inglewood | Apartments | 220 | 243 | units | 3,289 | 3,823 | 50 | 100 | 150 | 159 | 129 | 288 | | -03 | Avenue/Florence Avenue) [a] | irigiewood | Retail | 820 | 40.000 | ksf | 3,209 | 3,023 | 30 | 100 | 130 | 133 | 123 | 200 | | 64 | 101 S La Brea [a] | Inglewood | Philharmonic
Association | 495 | 25.500 | ksf | 735 | 1,847 | 30 | 15 | 45 | 28 | 31 | 59 | | 65 | 316 Hardy Street [a] | Inglewood | Condominiums | 221 | 5 | units | 27 | 25 | 1 | 1 | 2 | 1 | 1 | 2 | | 66 | 943-959 W Hyde Park Boulevard
[a] | Inglewood | Self-Storage | 151 | 159.498 | ksf | 241 | 311 | 10 | 6 | 16 | 13 | 14 | 27 | | 67 | 8911 Aviation Boulevard [a] | Inglewood | Car Rental | 841 | 173.804 | ksf | 4,703 | 9,080 | 281 | 89 | 370 | 306 | 346 | 652 | | 68 | 3900 W. Century Blvd | Inglewood | Hotel | 310 | 4 | rooms | 33 | 33 | 1 | 1 | 2 | 1 | 1 | 2 | | 69 | 9800 S. Sepulveda Boulevard [a] | Los Angeles | Hotel | 310 | 178 | rooms | 1,488 | 1,458 | 50 | 34 | 84 | 55 | 52 | 107 | | 70 | 7407 C. La Tiiara Baulayand Ibl | Los Angoles | Apartments | 220 | 140 | units | 799 | 1 260 | 10 | ГГ | 65 | 57 | 26 | 0.2 | | 70 | 7407 S. La Tijera Boulevard [b] | Los Angeles | Retail | 820 | 2.600 | ksf | 799 | 1,260 | 10 | 55 | 05 | 5/ | 26 | 83 | | 71 | 8740 S. La Tijera Boulevard [b] | Los Angeles | Apartments | 220 | 137 | units | 508 | 1,115 | -60 | -4 | -64 | 42 | 14 | 56 | | 72 | 8521 S. Sepulveda Boulevard [b] | Los Angeles | Fast food
restaurant with
drive-through | 934 | 3.999 | ksf | 1,271 | 2,464 | 23 | 69 | 92 | 84 | 50 | 134 | | | | | | | | | | ı | Estimat | ted Trip | Gener | ation | | | |-----|---------------------------------|--------------|---|--------------------|---------|----------|--------------|--------------|---------|-------------------|-------|-------|----------------------------------|---------| | No. | Project Location | Jurisdiction | Land Use | ITE
Land
Use | Size | Units | Daily | Trips | | day AN
our Tri | | | cday PN
lour Tri _l | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | ln | Out | Total | | 73 | 8540 S. La Tijera Boulevard [b] | Los Angeles | Middle School | 522 | 525 | students | 868 | 2,090 | 173 | 142 | 315 | 99 | 111 | 210 | | 74 | 6733 Sepulveda Boulevard [a] | Los Angeles | Apartments | 220 | 176 | units | 1,288 | 1,433 | 19 | 62 | 81 | 62 | 37 | 99 | | 75 | 5208 W Centinela Avenue [a] | Los Angeles | Fast food
restaurant with
drive-through | 934 | 4.642 | ksf | 1,093 | 2,860 | 47 | 46 | 93 | 38 | 36 | 74 | | 76 | 6711 S Sepulveda Boulevard [a] | Los Angeles | Apartments | 220 | 180 | units | 1,318 | 1,465 | 19 | 64 | 83 | 64 | 37 | 101 | | 77 | 6855 S La Cienega Boulevard [a] | Los Angeles | Supermarket | 850 | 22.590 | ksf | 1,520 | 4,012 | 25 | 17 | 42 | 74 | 74 | 148 | | | | | Condominiums | 221 | 281 | units | | | | | | | | | | 78 | 11604 Aviation Boulevard [a][b] | Los Angeles | Retail/Commercial | 820 | 26.500 | ksf | 3,349 | 3,514 | 54 | 124 | 178 | 164 | 124 | 288 | | | | | Apartments | 220 | 112 | units | | | | | | | | | | 79 | 3816 W 54th Street [a] | Los Angeles | Office Expansion | 710 | 1.196 | ksf | 12 | 3 | 1 | 0 | 1 | 0 | 1 | 1 | | 80 | 5550 S La Brea Avenue [a] | Los Angeles | Apartments | 220 | 32 | units | 234 | 260 | 3 | 12 | 15 | 11 | 7 | 18 | | 81 | 10501 S Buford Avenue [a] | Los Angeles | Townhomes | 210 | 11 | units | 104 | 105 | 2 | 6 | 8 | 7 | 4 | 11 | | 82 | 11824 Aviation Boulevard [a] | Los Angeles | Apartments | 220 | 36 | units | 264 | 293 | 4 | 13 | 17 | 13 | 7 | 20 | | 83 | 10505 Hawthorne Boulevard [a] | Los Angeles | Apartments | 220 | 32 | units | 234 | 260 | 3 | 12 | 15 | 11 | 7 | 18 | | 84 | 10609 S Inglewood Avenue [a] | Los Angeles | Apartments | 220 | 9 | units | 66 | 73 | 1 | 3 | 4 | 3 | 2 | 5 | | 85 | 10907 S Inglewood Avenue [a] | Los Angeles | Apartments | 220 | 4 | units | 29 | 33 | 0 | 2 | 2 | 1 | 1 | 2 | | 86 | 3838 W Slauson Avenue [a] | Los Angeles | Convenience Store | 851 | 1.060 | ksf | 808 | 1,149 | 33 | 33 | 66 | 27 | 25 | 52 | | 87 | 5101 Overhill Drive [a] | Los Angeles | Condominiums | 221 | 88 | units | 479 | 432 | 8 | 24 | 32 | 24 | 15 | 39 | | | LAX Northside Project | | Office | 710 | 612.500 | ksf | | | | | | | | | | 88 | Westchester Parkway b/t | Los Angolos | Playing Fields | 488 | 5 | fields | 22.625 | 10.076 | 1 504 | 425 | 2,000 | 750 | 1 705 | 2 5 4 2 | | 00 | Pershing Drive and Sepulveda | Los Angeles | Dog Park | 488 | 1 | field | 23,635 | 18,076 | 1,304 | 425 | 2,009 | 758 | 1,785 | 2,543 | | | Boulevard [h] | | Retail | 820 | 270.000 | ksf | | | | | | | | | | | | | ITE Land Size Units Daily Trips Weekday | ted Trip | Gener | ation | | | | | | | | | |-----|------------------------------|--------------|---|----------|---------|----------|--------------|--------------|-----|-------------------|-------|-------|--------------------|-------| | No. | Project Location | Jurisdiction | Land Use | | Size | Units | Daily | Trips | | day AN
our Tri | | | day PM
lour Tri | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | ln | Out | Total | | | | | Research and
Development | 760 | 612.500 | ksf | | | | | | | | | | | | | Civic Site | 411 | 215.000 | ksf | | | | | | | | | | | | | Park | 411 | 130.680 | ksf | | | | | | | | | | | | | Office | 710 | 300 | ksf | | | | | | | | | | 89 | LAX LAMP Development [f] | Los Angeles | Hotel | 310 | 400 | rooms | 13,816 | 13,163 | 527 | 197 | 724 | 543 | 804 | 1,347 | | 03 | LAX LAMI Development [i] | LOS Aligeles | Retail | 820 | 200 | ksf | 13,010 | 13,103 | 321 | 131 | 124 | 545 | 004 | 1,547 | | | | | Conference Center | N/A | 100 | ksf | | | | | | | | | | 90 | 1 LMU Drive | Los Angeles | School | 550 | 7,800 | students | 2540 | | 146 | 30 | 176 | 112 | 111 | 223 | | 91 | 1 Marina Expressway [g] | Los Angeles | Mixed Use | NA | | | | | 622 | 1,085 | 1,707 | 1,378 | 1,125 | 2,503 | | 92 | 4100 Del Rey Avenue | Los Angeles | Apartments | 220 | 77 | units | 512 | | 8 | 31 | 39 | 35 | 19 | 54 | | 93 | 138 E. Culver Boulevard | Los Angeles | Mixed Use | NA | | | 984 | | 18 | 42 | 60 | 63 | 52 | 115 | | 94 | 4140 S. Glencoe Avenue | Los Angeles | Mixed Use | NA | | | 481 | | 11 | 29 | 39 | 33 | 23 | 56 | | 95 | 1027 Abbot Kinney Boulevard | Los Angeles | Mixed Use | NA | | | 654 | | 16 | 9 | 25 | 25 | 17 | 42 | | 96 |
1020 E. Venice Boulevard | Los Angeles | Restaurant | 932 | 3.784 | ksf | 396 | | 18 | 15 | 33 | 20 | 13 | 33 | | 97 | 1414 S. Main Street | Los Angeles | Mixed Use | NA | | | 421 | | 3 | 6 | 9 | 26 | 11 | 40 | | 98 | 9204 S. Airport Boulevard | Los Angeles | Car wash | 947 | | | 824 | | 16 | 16 | 32 | 51 | 50 | 101 | | 99 | 4091 S. Redwood Avenue | Los Angeles | Mixed Use | NA | | | 391 | | 4 | 21 | 25 | 29 | 22 | 51 | | 100 | 4210 S. Del Rey Avenue | Los Angeles | Mixed Use | NA | | | 627 | | 24 | 47 | 71 | 48 | 37 | 85 | | 101 | 12777 W. Jefferson Boulevard | Los Angeles | Office | 710 | 49.950 | ksf | 550 | | 68 | 9 | 77 | 17 | 83 | 100 | | 102 | 4040 Del Rey Avenue | Los Angeles | Mixed Use | NA | | | 1,839 | | -50 | 139 | 88 | 149 | -28 | 121 | | 103 | 5000 S. Beethoven Street | Los Angeles | Mixed Use | NA | | | 1,569 | | 24 | 96 | 120 | 107 | 58 | 165 | | 104 | 11612 W. Culver Boulevard | Los Angeles | Mixed Use | NA | | | 447 | | 12 | 26 | 38 | 28 | 15 | 43 | | | | | | | | | | | Estima | ted Trip | Gener | ation | | | |-----|------------------------------|-----------------------|---|--------------------|---------|----------|--------------|--------------|--------|-------------------|-------|-------|--------------------|-------| | No. | Project Location | Jurisdiction | Land Use | ITE
Land
Use | Size | Units | Daily | Trips | | day AN
our Tri | | | day PN
Iour Tri | | | | | | | Code | | | Week-
day | Week-
end | In | Out | Total | ln | Out | Total | | 105 | 12964 W. Panama Street | Los Angeles | Office | 710 | 159.000 | ksf | 777 | | 72 | 9 | 81 | 20 | 71 | 91 | | 106 | 595 Venice Boulevard | Los Angeles | Mixed Use | NA | | | 556 | | 50 | 6 | 56 | 15 | 70 | 85 | | 107 | 12575 W. Beatrice Street | Los Angeles | Office | 710 | 199.500 | ksf | 1,946 | | 242 | 33 | 275 | 57 | 277 | 334 | | 108 | 4721 S. Alla Road | Los Angeles | Office | 710 | 118.352 | ksf | 267 | | 38 | 5 | 43 | 9 | 48 | 57 | | 109 | 5748 Mesmer | Los Angeles | Automobile parts and service center | 943 | 113.163 | ksf | 2,694 | | 139 | 44 | 183 | 90 | 176 | 266 | | 110 | 13488 W. Maxella Avenue | Los Angeles | Apartments | 220 | 65 | units | 362 | | 6 | 23 | 29 | 26 | 14 | 40 | | 111 | 12870 W. Panama Street | Los Angeles | School | 520 | 532 | students | 1,320 | | 263 | 216 | 479 | 79 | 89 | 168 | | 112 | 13400 W. Maxella Avenue [g] | Los Angeles | Mixed Use | NA | | | 2,079 | | 60 | 236 | 296 | 115 | -32 | 83 | | 113 | 11811 S. Teale Street | Los Angeles | Office | 710 | 10.925 | ksf | 121 | | 15 | 2 | 17 | 5 | 26 | 31 | | 114 | 5405 S. Jandy Place | Los Angeles | Office | 710 | 93.950 | ksf | 613 | | 86 | 10 | 96 | 30 | 154 | 184 | | 115 | 12331 W. Palms Boulevard [g] | Los Angeles | Mixed Use | NA | | | 303 | | 4 | 14 | 18 | 16 | 12 | 28 | | 116 | 5208 W. Centinela Avenue | Los Angeles | Fast food
restaurant with
drive-through | 934 | 4.642 | ksf | 1,093 | | 47 | 46 | 93 | 38 | 36 | 74 | | 117 | 3233 S. Thatcher Avenue | Los Angeles | Apartments | 220 | 98 | units | 212 | | 8 | 13 | 21 | 10 | 9 | 19 | | 118 | 12555 W. Jefferson Boulevard | Los Angeles | Office | 710 | 20.981 | ksf | 542 | | 28 | 8 | 36 | 16 | 41 | 57 | | 119 | 11869 S. Teale Street | Los Angeles | Office | 710 | 29.819 | ksf | 240 | | 35 | 5 | 40 | 10 | 59 | 69 | | 120 | 11405 Venice Boulevard | Los Angeles | Apartments | 220 | 85 | units | 204 | | 11 | 4 | 15 | 7 | 15 | 22 | | 121 | 204 N. Venice Boulevard | Los Angeles | Mixed Use | NA | | | 911 | | 39 | 49 | 88 | 63 | 61 | 124 | | 122 | 480 Washington Boulevard | Los Angeles
County | Office | 710 | 6.000 | ksf | 58 | | 6 | 1 | 7 | 7 | 8 | 15 | | 123 | 13555 Fiji Way | Los Angeles
County | Charter Boat | | 5 | boats | | | | | | | | | Appendix B: Cumulative Projects List January 2021 Page 9 of 9 # P ### Notes: ksf= one thousand square feet. - [a] Trip generation rates based on rates found from Trip Generation, 10th Edition, Institute of Transportation Engineers, 2017. - [b] Trip generation rates based on information provided by LADOT. - [c] Trip generation rates based on information in Downtown Hawthorne Specific Plan Environmental Impact Report. - [d] Trip generation rates based on information from Transit Oriented Development Plan for Downtown Inglewood and Fairview Heights Environmental Impact Report. - [e] Trip generation rates based on information from Hollywood Park Stadium Alternative Project (February 2015). Trip generation excludes casino trips from 2015 analysis, as Casino was already built when traffic counts for IBEC were taken in springs 2018. - [f] Trip generation rates based on trip rates from Environmental Impact Report for Los Angeles International Airport (LAX) Land Access Modernization Program (LAMP). An annual growth rate was developed using the existing 2015 volumes and future year 2024 from the LAMP EIR. This growth rate was applied to 2015 volumes to develop existing base volumes for 2018, and the difference between 2018 volumes and 2024 volumes are shown as the related project trips in the above table. Related project trips for weekends and late night weekdays were developed using ratios from counts taken during the LAMP EIR showing relative activity near LAX. [g] Specific size of project not provided. - [h] Trip generation rates based on information from LAX Northside Environmental Impact Report. Given the delay in the implementation of the project and magnitude of this development, only first phase of this project included in 2028 Scenario. Prepared by Fehr & Peers, 2020. # **Appendix C: Trip Generation Update Memorandum** ## **MEMORANDUM** Date: January 8, 2021 To: Anthony Skidmore CDM From: Darrin McKenna ami McKenna Subject: ATMP TRIP GENERATION UPDATE This memorandum provides a summary of the trip generation differences between the Airfield & Terminal Modernization Project (ATMP) Environmental Impact Report (EIR) traffic analyses and the non-California Environmental Quality Act (non-CEQA) analysis. # **Trip Generation** The original EIR trip generation estimates for the future conditions are developed using calibrated mode splits representing the departures, arrivals, and overall airport vehicle peak hours. These calibrated mode splits are based on previously completed 2018 operational analysis completed for LAWA using a variety of data including loop detector counts, Automatic Vehicle Identification (AVI) data, Transportation Networking Company (TNC) transaction data, taxi transaction data, and closed-circuit television video. As part of the 2018 analysis, passenger mode splits for the three landside peak activity hours were developed, there are Departures Peak (approx. 6:00 am – 700 am), Arrival Peak (approx. 9:00 pm – 10:00 pm), and the Overall Airport Peak (approx. 11:00 am – 12:00 pm). To estimate the 24-hour airport trip generation for the EIR, these three calibrated mode splits are assumed to represent different periods of the day, as shown in Table 1. The calibrated mode splits are then forecast forward based on existing trends in changes to how passengers access the airport. To develop the estimates for the vehicle volumes the forecast mode splits are applied to number of passengers for each hour and the calibrated vehicle occupancies. The resulting vehicle volumes were used in the ATMP EIR analysis. TONY SKIDMORE CDM JANUARY 8, 2021 Page 2 TABLE 1 ATMP EIR ASSUMED MODE SPLIT THROUGHOUT DAY | Hour Starting | Mode Split | |---------------|----------------------| | 12:00 AM | Arrivals Peak | | 1:00 AM | Arrivals Peak | | 2:00 AM | Departures Peak | | 3:00 AM | Departures Peak | | 4:00 AM | Departures Peak | | 5:00 AM | Departures Peak | | 6:00 AM | Departures Peak | | 7:00 AM | Departures Peak | | 8:00 AM | Departures Peak | | 9:00 AM | Overall Airport Peak | | 10:00 AM | Overall Airport Peak | | 11:00 AM | Overall Airport Peak | | 12:00 PM | Overall Airport Peak | | 1:00 PM | Overall Airport Peak | | 2:00 PM | Overall Airport Peak | | 3:00 PM | Overall Airport Peak | | 4:00 PM | Overall Airport Peak | | 5:00 PM | Arrivals Peak | | 6:00 PM | Arrivals Peak | | 7:00 PM | Arrivals Peak | | 8:00 PM | Arrivals Peak | | 9:00 PM | Arrivals Peak | | 10:00 PM | Arrivals Peak | | 11:00 PM | Arrivals Peak | | | | Source: Ricondo & Associates, Inc., November 2020. Based on the off-airport analysis the vehicle estimates appear to be too conservative. For the AM time period from 6:00 AM to 9:00 AM the Departures Peak mode split is applied throughout. The departures mode split is based on the 6:00 AM to 7:00 AM hour from the 2018 data. This mode split was noted for having a high proportion of single party vehicles as well as low occupancies in the vehicles generating a large number of vehicles per passenger. To investigate the vehicle volume estimate, Ricondo looked at the data for the 7:00 AM to 9:00 AM data from 2018 and performed a rough estimate of the mode split for these hours based on 2018 data. Compared with a calibrated mode split analysis which was conducted for Departures Peak Hour (6:00 am - 7:00 am), the result was the mode splits for 7:00 AM to 9:00 AM were TONY SKIDMORE CDM JANUARY 8, 2021 Page 3 generally closer to that of the Overall Airport Peak Hour and generated fewer vehicles per passenger. As a result of this the decision was made to adjust the mode split for the 7:00 AM to 9:00 AM portions of the AM peak period reducing the vehicle volumes generated to a more reasonable level. ## **Explanation for Conservative Estimate** The calibration peak hours are based on the peak vehicle volumes rather than the peak passenger volumes and if the passenger peak does not align with the vehicle peak hour the estimates will be conservative. For the Departures peak hour based on passengers, the passenger volume is approximately 26% larger than the number of passengers during the vehicle peak hour (6:00 am – 7:00 am). When comparing to the 2018 data, using the Departures peak hour mode split during the (7:00 – 9:00
am) period where departing passenger volumes peak resulted in many more vehicles being generated compared to the 2018 counts. A similar comparison was conducted for the Airport Peak Hour and the Arrivals Peak Hour which showed a much smaller effect from the vehicle peak hours not aligning with the passenger peak hours. The Departures Peak Hour from 6:00 AM to 7:00 AM has a few unique factors contributing to the conservative mode split. The roadway network at that time is relatively unconstrained allowing demand to enter the airport more easily. In addition, during the departures heavy time vehicles are more likely to use the underutilized arrivals level for drop off which makes calibrating vehicle occupancies more challenging. Ricondo attempts to compensate and estimate this impact by assuming a percentage of passengers use the opposite level. The limited amount of CCTV available for this hour added an additional challenge estimating the number of people using the Arrivals level. Employees entering the CTA to park may be included as well, making the number of vehicles per passenger appear to be higher. All of these factors contribute to making the vehicle per passenger for 6:00 AM to 7:00 AM the highest of the peak hours. Applying this mode split to the 7:00 AM to 9:00 AM hours appears to be overly conservative and applying the mode split typical of the overall Airport Peak Hour is more reasonable. ## **TNC Rematch** The EIR trip generation estimate conservatively assumes that there are no Rematch operations for TNC vehicles in the CTA. Each TNC drop off and pick up is assumed to be served by a separate vehicle. In the past LAX has used TNC Rematch to reduce the volumes of TNCs entering the CTA by allowing a TNC to pick up a passenger after completing their drop off and without leaving the CTA. For example, prior to LAX-it, a TNC driver dropping off a passenger at Terminal 2, could receive a notification from the app Rematching them with a new passenger at to Terminal 4. Without leaving the CTA, the driver would pick up their new passenger at Terminal 4 and then depart airport. Over the course of the day this system can reduce the number of vehicles entering the airport for pickups by approximately 50-percent, with some hours reducing the pickups vehicles entering the CTA by more than 80-percent. For the non-CEQA analysis Rematch factors were applied to the TNC pickup operations occurring at the CTA and ITF West, reducing the trip generation for TNC Pickups at both facilities. If sufficient drop off vehicles were available to meet pick up demand, the CTA pickup vehicles were reduced up to 90% and ITF West by up to 50%. This change resulted in a reduction TONY SKIDMORE CDM JANUARY 8, 2021 Page 4 in the number of vehicles accessing the airport throughout the day to be more realistic to the expected TNC operations in the future. cc: John Muggeridge, Fatemeh Ranaiefar – Fehr & Peers Joe Huy, Joe Birge - Ricondo 17-14-1031 $p:\project-alexandria\lawa\32\ nasip\landside\eir\document\lax\ non-ceqa\ vs\ eir\ trip\ generation\ 182021.docx$ Appendix D: 2028 Conditions Study Intersection Lane Configurations and Volumes Appendix G AM (PM) Peak Hour Turning Movement Volumes and Lane Configurations Projected Future Conditions with Proposed Project (2028 with Project) # Appendix E: 2028 Conditions LOS Worksheets | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |------------------------------|-----------|------------|-------|-------------|-----------|-----------|-----------|------------|------|-------------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | † † | 7 | ሻ | ^ | 7 | ሻ | ^ ^ | 7 | ች | ተተተ | 7 | | Traffic Volume (veh/h) | 220 | 570 | 250 | 180 | 800 | 400 | 110 | 1870 | 70 | 200 | 1430 | 170 | | Future Volume (veh/h) | 220 | 570 | 250 | 180 | 800 | 400 | 110 | 1870 | 70 | 200 | 1430 | 170 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 227 | 588 | 105 | 186 | 825 | 289 | 113 | 1928 | 33 | 206 | 1474 | 65 | | Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 259 | 750 | 334 | 295 | 884 | 394 | 246 | 2013 | 809 | 217 | 2073 | 643 | | Arrive On Green | 0.08 | 0.21 | 0.21 | 0.12 | 0.25 | 0.25 | 0.07 | 0.39 | 0.39 | 0.09 | 0.41 | 0.41 | | Sat Flow, veh/h | 3456 | 3554 | 1585 | 1781 | 3554 | 1585 | 1781 | 5106 | 1585 | 1781 | 5106 | 1585 | | Grp Volume(v), veh/h | 227 | 588 | 105 | 186 | 825 | 289 | 113 | 1928 | 33 | 206 | 1474 | 65 | | Grp Sat Flow(s), veh/h/ln | 1728 | 1777 | 1585 | 1781 | 1777 | 1585 | 1781 | 1702 | 1585 | 1781 | 1702 | 1585 | | Q Serve(g_s), s | 7.8 | 18.8 | 5.3 | 5.7 | 27.3 | 20.1 | 4.3 | 44.1 | 0.4 | 9.4 | 28.9 | 3.0 | | Cycle Q Clear(g_c), s | 7.8 | 18.8 | 5.3 | 5.7 | 27.3 | 20.1 | 4.3 | 44.1 | 0.4 | 9.4 | 28.9 | 3.0 | | Prop In Lane | 1.00 | 10.0 | 1.00 | 1.00 | 21.0 | 1.00 | 1.00 | | 1.00 | 1.00 | 20.0 | 1.00 | | Lane Grp Cap(c), veh/h | 259 | 750 | 334 | 295 | 884 | 394 | 246 | 2013 | 809 | 217 | 2073 | 643 | | V/C Ratio(X) | 0.88 | 0.78 | 0.31 | 0.63 | 0.93 | 0.73 | 0.46 | 0.96 | 0.04 | 0.95 | 0.71 | 0.10 | | Avail Cap(c_a), veh/h | 259 | 882 | 394 | 295 | 888 | 396 | 250 | 2013 | 809 | 217 | 2073 | 643 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.68 | 0.68 | 0.68 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 54.9 | 44.8 | 25.3 | 47.7 | 44.1 | 41.4 | 23.0 | 35.4 | 5.4 | 33.0 | 29.8 | 22.1 | | Incr Delay (d2), s/veh | 26.7 | 5.7 | 1.3 | 4.2 | 16.8 | 8.3 | 0.9 | 9.3 | 0.1 | 46.6 | 2.1 | 0.3 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 7.7 | 13.5 | 4.8 | 9.2 | 19.8 | 13.4 | 3.3 | 25.3 | 0.4 | 11.0 | 17.6 | 2.1 | | Unsig. Movement Delay, s/veh | | 10.0 | ٦.0 | J. <u>Z</u> | 13.0 | 10.4 | 0.0 | 20.0 | 0.4 | 11.0 | 17.0 | ۷.۱ | | LnGrp Delay(d),s/veh | 81.6 | 50.5 | 26.7 | 51.9 | 60.9 | 49.7 | 23.9 | 44.6 | 5.4 | 79.7 | 31.9 | 22.4 | | LnGrp LOS | 61.6
F | 50.5
D | C | D D | 60.5
E | 43.7
D | 23.3
C | D | Α | 13.1
E | C C | C | | Approach Vol, veh/h | | 920 | | <u> </u> | 1300 | <u> </u> | | 2074 | | <u> </u> | 1745 | | | Approach Delay, s/veh | | 55.4 | | | 57.1 | | | 42.9 | | | 37.2 | | | Approach LOS | | 55.4
E | | | 57.1 | | | 42.9
D | | | 37.2
D | | | Apploach LOS | | E | | | E | | | D | | | D | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 15.1 | 55.1 | 15.6 | 36.3 | 16.5 | 53.7 | 20.3 | 31.5 | | | | | | Change Period (Y+Rc), s | * 6.3 | 6.3 | * 6.6 | * 6.4 | * 6.3 | 6.3 | 6.4 | 6.2 | | | | | | Max Green Setting (Gmax), s | * 9.1 | 46.5 | * 9 | * 30 | * 10 | 45.4 | 9.4 | 29.8 | | | | | | Max Q Clear Time (g_c+I1), s | 6.3 | 30.9 | 9.8 | 29.3 | 11.4 | 46.1 | 7.7 | 20.8 | | | | | | Green Ext Time (p_c), s | 0.1 | 9.3 | 0.0 | 0.6 | 0.0 | 0.0 | 0.1 | 4.5 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 46.2 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | | Notes | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ၨ | → | \rightarrow | • | ← | • | • | † | / | > | ļ | 4 | |------------------------------|----------|------------|---------------|-------|-----------|------|----------|------------|------|-------------|-----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻሻ | † † | 7 | ሻ | ^ | 7 | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Traffic Volume (veh/h) | 200 | 890 | 160 | 110 | 770 | 200 | 220 | 1660 | 110 | 370 | 1750 | 420 | | Future Volume (veh/h) | 200 | 890 | 160 | 110 | 770 | 200 | 220 | 1660 | 110 | 370 | 1750 | 420 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 206 | 918 | 53 | 113 | 794 | 93 | 227 | 1711 | 42 | 381 | 1804 | 264 | | Peak Hour Factor | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 259 | 894 | 399 | 191 | 876 | 391 | 236 | 1622 | 619 | 323 | 1885 | 585 | | Arrive On Green | 0.08 | 0.25 | 0.25 | 0.07 | 0.25 | 0.25 | 0.10 | 0.32 | 0.32 | 0.15 | 0.37 | 0.37 | | Sat Flow, veh/h | 3456 | 3554 | 1585 | 1781 | 3554 | 1585 | 1781 | 5106 | 1585 | 1781 | 5106 | 1585 | | Grp Volume(v), veh/h | 206 | 918 | 53 | 113 | 794 | 93 | 227 | 1711 | 42 | 381 | 1804 | 264 | | Grp Sat Flow(s), veh/h/ln | 1728 | 1777 | 1585 | 1781 | 1777 | 1585 | 1781 | 1702 | 1585 | 1781 | 1702 | 1585 | | Q Serve(g_s), s | 7.0 | 30.2 | 2.3 | 3.2 | 26.0 | 5.6 | 10.8 | 38.1 | 0.7 | 17.7 | 41.4 | 15.1 | | Cycle Q Clear(g_c), s | 7.0 | 30.2 | 2.3 | 3.2 | 26.0 | 5.6 | 10.8 | 38.1 | 0.7 | 17.7 | 41.4 | 15.1 | | Prop In Lane | 1.00 | 00.2 | 1.00 | 1.00 |
20.0 | 1.00 | 1.00 | 00.1 | 1.00 | 1.00 | • • • • | 1.00 | | Lane Grp Cap(c), veh/h | 259 | 894 | 399 | 191 | 876 | 391 | 236 | 1622 | 619 | 323 | 1885 | 585 | | V/C Ratio(X) | 0.79 | 1.03 | 0.13 | 0.59 | 0.91 | 0.24 | 0.96 | 1.06 | 0.07 | 1.18 | 0.96 | 0.45 | | Avail Cap(c_a), veh/h | 259 | 894 | 399 | 194 | 888 | 396 | 236 | 1622 | 619 | 323 | 1885 | 585 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.65 | 0.65 | 0.65 | 1.00 | 1.00 | 1.00 | | Uniform Delay (d), s/veh | 54.6 | 44.9 | 18.7 | 52.2 | 43.9 | 36.2 | 32.2 | 40.9 | 8.1 | 37.9 | 36.9 | 28.6 | | Incr Delay (d2), s/veh | 15.6 | 37.0 | 0.4 | 4.7 | 13.3 | 0.7 | 37.5 | 34.7 | 0.1 | 108.5 | 12.8 | 2.5 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 6.4 | 24.8 | 2.2 | 6.2 | 18.6 | 4.0 | 10.5 | 27.8 | 0.6 | 28.6 | 26.0 | 10.0 | | Unsig. Movement Delay, s/veh | | 21.0 | 2,2 | 0.2 | 10.0 | 1.0 | 10.0 | 21.0 | 0.0 | 20.0 | 20.0 | 10.0 | | LnGrp Delay(d),s/veh | 70.2 | 81.9 | 19.0 | 56.8 | 57.2 | 36.8 | 69.7 | 75.6 | 8.3 | 146.5 | 49.7 | 31.1 | | LnGrp LOS | E | F | В | E | E | D | E | 7 0.0
F | Α | F | D | C | | Approach Vol, veh/h | <u> </u> | 1177 | | | 1000 | | <u> </u> | 1980 | | <u>'</u> | 2449 | | | Approach Delay, s/veh | | 77.0 | | | 55.3 | | | 73.5 | | | 62.7 | | | Approach LOS | | 77.0
E | | | 55.5
E | | | 73.5
F | | | 02.7
F | | | Apploach LOS | | | | | | | | | | | | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 17.8 | 50.6 | 15.6 | 36.0 | 24.0 | 44.4 | 15.2 | 36.4 | | | | | | Change Period (Y+Rc), s | * 6.3 | 6.3 | * 6.6 | * 6.4 | * 6.3 | 6.3 | 6.4 | 6.2 | | | | | | Max Green Setting (Gmax), s | * 12 | 44.1 | * 9 | * 30 | * 18 | 37.9 | 9.0 | 30.2 | | | | | | Max Q Clear Time (g_c+I1), s | 12.8 | 43.4 | 9.0 | 28.0 | 19.7 | 40.1 | 5.2 | 32.2 | | | | | | Green Ext Time (p_c), s | 0.0 | 0.7 | 0.0 | 1.4 | 0.0 | 0.0 | 0.1 | 0.0 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 67.4 | | | | | | | | | | | HCM 6th LOS | | | Е | | | | | | | | | | | Notes | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. | | ᄼ | → | \rightarrow | • | ← | • | • | † | / | - | ļ | 1 | |------------------------------|------|----------|---------------|-------|------------|------|-------|----------|------|------|----------|------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | ሻሻ | ተ ኈ | | ሻ | ተተተ | 7 | ሻ | ^ | 7 | | Traffic Volume (veh/h) | 170 | 220 | 100 | 320 | 290 | 50 | 310 | 1880 | 140 | 40 | 1740 | 80 | | Future Volume (veh/h) | 170 | 220 | 100 | 320 | 290 | 50 | 310 | 1880 | 140 | 40 | 1740 | 80 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 0.98 | | 0.96 | 1.00 | | 0.96 | 1.00 | | 0.99 | 1.00 | | 0.99 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 173 | 224 | 45 | 327 | 296 | 32 | 316 | 1918 | 108 | 41 | 1776 | 43 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 332 | 748 | 443 | 230 | 678 | 73 | 244 | 2432 | 851 | 172 | 2103 | 749 | | Arrive On Green | 0.07 | 0.21 | 0.21 | 0.07 | 0.21 | 0.21 | 0.05 | 0.32 | 0.32 | 0.04 | 0.41 | 0.41 | | Sat Flow, veh/h | 1781 | 3554 | 1517 | 3456 | 3222 | 345 | 1781 | 5106 | 1565 | 1781 | 5106 | 1562 | | Grp Volume(v), veh/h | 173 | 224 | 45 | 327 | 162 | 166 | 316 | 1918 | 108 | 41 | 1776 | 43 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1777 | 1517 | 1728 | 1777 | 1790 | 1781 | 1702 | 1565 | 1781 | 1702 | 1562 | | Q Serve(g_s), s | 6.0 | 4.8 | 2.0 | 6.0 | 7.1 | 7.3 | 7.0 | 30.8 | 3.9 | 1.2 | 28.2 | 1.3 | | Cycle Q Clear(g_c), s | 6.0 | 4.8 | 2.0 | 6.0 | 7.1 | 7.3 | 7.0 | 30.8 | 3.9 | 1.2 | 28.2 | 1.3 | | Prop In Lane | 1.00 | | 1.00 | 1.00 | | 0.19 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Lane Grp Cap(c), veh/h | 332 | 748 | 443 | 230 | 374 | 377 | 244 | 2432 | 851 | 172 | 2103 | 749 | | V/C Ratio(X) | 0.52 | 0.30 | 0.10 | 1.42 | 0.43 | 0.44 | 1.30 | 0.79 | 0.13 | 0.24 | 0.84 | 0.06 | | Avail Cap(c_a), veh/h | 332 | 1027 | 562 | 230 | 513 | 517 | 244 | 2432 | 851 | 207 | 2103 | 749 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 0.67 | 1.00 | 1.00 | 1.00 | | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.22 | 0.22 | 0.22 | 0.64 | 0.64 | 0.64 | | Uniform Delay (d), s/veh | 27.3 | 29.9 | 23.5 | 42.0 | 30.9 | 30.9 | 21.6 | 26.5 | 13.4 | 18.4 | 23.9 | 12.6 | | Incr Delay (d2), s/veh | 1.5 | 0.2 | 0.1 | 212.2 | 8.0 | 0.8 | 140.1 | 0.6 | 0.1 | 0.5 | 2.9 | 0.1 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 5.3 | 3.6 | 1.2 | 15.7 | 5.4 | 5.6 | 16.5 | 15.7 | 2.2 | 8.0 | 15.4 | 0.8 | | Unsig. Movement Delay, s/veh | | | | | | | | | | | | | | LnGrp Delay(d),s/veh | 28.8 | 30.2 | 23.6 | 254.2 | 31.7 | 31.7 | 161.7 | 27.1 | 13.4 | 18.8 | 26.7 | 12.7 | | LnGrp LOS | С | С | С | F | С | С | F | С | В | В | С | B | | Approach Vol, veh/h | | 442 | | | 655 | | | 2342 | | | 1860 | | | Approach Delay, s/veh | | 29.0 | | | 142.8 | | | 44.7 | | | 26.2 | | | Approach LOS | | С | | | F | | | D | | | С | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 10.0 | 24.9 | 13.0 | 42.1 | 10.0 | 24.9 | 7.2 | 47.9 | | | | | | Change Period (Y+Rc), s | 4.0 | * 6 | * 6 | * 5 | 4.0 | * 6 | 4.0 | * 5 | | | | | | Max Green Setting (Gmax), s | 6.0 | * 26 | * 7 | * 30 | 6.0 | * 26 | 5.0 | * 34 | | | | | | Max Q Clear Time (g_c+l1), s | 8.0 | 9.3 | 9.0 | 30.2 | 8.0 | 6.8 | 3.2 | 32.8 | | | | | | Green Ext Time (p_c), s | 0.0 | 1.5 | 0.0 | 0.0 | 0.0 | 1.3 | 0.0 | 1.1 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 49.0 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | • | → | • | • | ← | • | 4 | † | / | - | Ţ | 1 | |--|--------------|--------------|-----------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | 1,4 | ∱ ∱ | | ሻ | ተተተ | 7 | 7 | ተተተ | 7 | | Traffic Volume (veh/h) | 160 | 490 | 120 | 270 | 230 | 60 | 230 | 1620 | 310 | 80 | 1840 | 100 | | Future Volume (veh/h) | 160 | 490 | 120 | 270 | 230 | 60 | 230 | 1620 | 310 | 80 | 1840 | 100 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 0.96 | | 0.94 | 1.00 | | 0.94 | 1.00 | 4.00 | 0.98 | 1.00 | 4.00 | 0.98 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | 4070 | No | 4070 | 4070 | No | 4070 | 4070 | No | 4070 | 4070 | No | 4070 | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 168 | 516 | 69 | 284 | 242 | 32 | 242 | 1705 | 274 | 84 | 1937 | 60 | | Peak Hour Factor | 0.95 | 0.95 | 0.95 | 0.95
2 | 0.95
2 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95
2 | 0.95 | | Percent Heavy Veh, % | 2
423 | 931 | 2
477 | 269 | 856 | 2
111 | 2
223 | 2
2044 | 2
746 | 2
183 | 1896 | 2
682 | | Cap, veh/h
Arrive On Green | 0.07 | 0.26 | 0.26 | 0.08 | 0.27 | 0.27 | 0.03 | 0.13 | 0.13 | 0.05 | 0.37 | 0.37 | | | 1781 | 3554 | 1485 | 3456 | 3135 | 408 | 1781 | 5106 | 1555 | 1781 | 5106 | 1553 | | Sat Flow, veh/h | | | | | | | | | | | | | | Grp Volume(v), veh/h | 168 | 516 | 69 | 284 | 135 | 139 | 242 | 1705 | 274 | 84 | 1937 | 60 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1777 | 1485 | 1728 | 1777 | 1766 | 1781 | 1702 | 1555 | 1781 | 1702 | 1553 | | Q Serve(g_s), s | 6.0 | 11.3 | 3.0 | 7.0 | 5.4 | 5.6 | 7.0 | 29.3 | 12.7 | 2.6 | 33.4 | 2.0 | | Cycle Q Clear(g_c), s | 6.0 | 11.3 | 3.0 | 7.0 | 5.4 | 5.6 | 7.0 | 29.3 | 12.7 | 2.6 | 33.4 | 2.0 | | Prop In Lane | 1.00 | 004 | 1.00 | 1.00 | 405 | 0.23 | 1.00 | 0044 | 1.00 | 1.00 | 4000 | 1.00 | | Lane Grp Cap(c), veh/h | 423 | 931 | 477 | 269 | 485 | 482 | 223 | 2044 | 746 | 183 | 1896 | 682 | | V/C Ratio(X) | 0.40 | 0.55 | 0.14 | 1.06 | 0.28 | 0.29 | 1.08 | 0.83 | 0.37 | 0.46 | 1.02 | 0.09 | | Avail Cap(c_a), veh/h | 423 | 1027 | 517 | 269 | 533 | 530 | 223 | 2044 | 746 | 195 | 1896 | 682 | | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00
1.00 | 1.00 | 1.00
1.00 | 0.33 | 0.33 | 0.33
0.34 | 1.00
0.33 | 1.00
0.33 | 1.00 | | Upstream Filter(I) Uniform Delay (d), s/veh | 1.00
22.7 | 1.00
28.7 | 22.0 | 41.5 | 25.7 | 25.8 | 0.34
24.7 | 0.34
36.1 | 22.5 | 21.4 | 28.3 | 0.33 | | | 0.6 | 0.5 | 0.1 | 70.6 | 0.3 | 0.3 | 59.9 | 1.5 | 0.5 | 0.6 | 20.3
17.9 | 14.8
0.1 | | Incr Delay (d2), s/veh Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 4.7 | 8.3 | 1.8 | 9.5 | 4.0 | 4.1 | 9.5 | 17.0 | 7.5 | 1.9 | 19.9 | 1.3 | | Unsig. Movement Delay, s/veh | | 0.3 | 1.0 | 9.5 | 4.0 | 4.1 | 9.5 | 17.0 | 7.5 | 1.9 | 19.9 | 1.3 | | LnGrp Delay(d),s/veh | 23.3 | 29.2 | 22.1 | 112.1 |
26.0 | 26.1 | 84.6 | 37.6 | 23.0 | 22.0 | 46.1 | 14.9 | | LnGrp LOS | 23.3
C | 29.2
C | 22.1
C | F | 20.0
C | 20.1
C | 04.0
F | 37.0
D | 23.0
C | 22.0
C | 40.1
F | 14.9
B | | | | 753 | | <u></u> | 558 | | Г | 2221 | U | | 2081 | В | | Approach Vol, veh/h Approach Delay, s/veh | | 27.2 | | | 69.9 | | | 40.9 | | | 44.3 | | | Approach LOS | | 21.2
C | | | 09.9
E | | | 40.9
D | | | 44.3
D | | | Approach LOS | | C | | | E | | | U | | | U | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 10.0 | 30.6 | 11.0 | 38.4 | 11.0 | 29.6 | 8.4 | 41.0 | | | | | | Change Period (Y+Rc), s | 4.0 | * 6 | * 6 | * 5 | 4.0 | * 6 | 4.0 | * 5 | | | | | | Max Green Setting (Gmax), s | 6.0 | * 27 | * 5 | * 31 | 7.0 | * 26 | 5.0 | * 33 | | | | | | Max Q Clear Time (g_c+l1), s | 8.0 | 7.6 | 9.0 | 35.4 | 9.0 | 13.3 | 4.6 | 31.3 | | | | | | Green Ext Time (p_c), s | 0.0 | 1.3 | 0.0 | 0.0 | 0.0 | 2.9 | 0.0 | 1.5 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 43.2 | | | | | | | | | | | HCM 6th LOS | | | D | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | Lane Configurations | | ۶ | → | • | • | ← | • | 1 | † | / | / | ↓ | 4 | |--|------------------------------|------|------------|------|------|------------|------|------|----------|----------|----------|----------|------| | Traffic Volume (veh/h) | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Future Volume (veh/h) | | | ∱ β | | Ť | ∱ β | | | ተተተ | 7 | Ť | ተተተ | 7 | | Initial Q (Qb), veh | Traffic Volume (veh/h) | | 360 | | | 740 | 320 | | 2010 | | 160 | | 30 | | Ped-Bike Adj(A_pbT) | | | | | | | | | | | | | 30 | | Parking Bus, Adj | | | 0 | | | 0 | | | 0 | | | 0 | 0 | | Work Zone On Approach | , , , , | | | | | | | | | | | | 0.99 | | Adj Sat Flow, veh/h/In 1870 202 | | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Adj Flow Rate, veh/h Peak Hour Factor O.97 O.97 O.97 O.97 O.97 O.97 O.97 O.97 | | | | | | | | | | | | | | | Peak Hour Factor 0.97 0.98 2 | | | | | | | | | | | | | 1870 | | Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | | | | | | | | | | | 13 | | Cap, veh/h 102 725 141 326 764 274 228 2207 786 188 2207 70 Arrive On Green 0.01 0.25 0.25 0.07 0.30 0.30 0.06 0.43 0.43 0.11 0.86 0.8 Sat Flow, veh/h 1781 2953 574 1781 2546 914 1781 5106 1574 1781 5106 157 Gry Volume(v), veh/h 10 222 222 216 532 505 186 2072 15 165 1938 17 Gry Sat Flow(s), veh/h/ln 1781 1777 1684 1781 1772 1574 1781 1702 157 Q Serve(g. s), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Cycle Q Clear(g. c), veh/h 102 436 430 326 533 505 228 2207 786 <td></td> <td>0.97</td> | | | | | | | | | | | | | 0.97 | | Arrive On Green 0.01 0.25 0.25 0.07 0.30 0.30 0.06 0.43 0.43 0.11 0.86 0.8 Sat Flow, veh/h 1781 2953 574 1781 2546 914 1781 5106 157 1781 5106 157 Gry Volume(v), veh/h 10 222 222 216 532 505 186 2072 15 165 1938 1 Gry Sat Flow(s), veh/h/h 1781 1777 1750 1781 1777 1684 1781 1702 1574 1781 1702 1574 1781 1702 1574 1781 1702 1574 1781 1702 1574 1781 1702 1574 1781 1702 1574 1781 1702 1574 1781 1702 1574 1781 1702 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 1582 | | | | | | | | | | | | | 2 | | Sat Flow, veh/h 1781 2953 574 1781 2546 914 1781 5106 1574 1781 5106 157 Grp Volume(v), veh/h 10 222 222 216 532 505 186 2072 15 165 1938 1 Grp Sat Flow(s), veh/h/ln 1781 1777 1750 1781 1777 1684 1781 1702 1574 1781 1702 157 Q Serve(g_s), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Cycle Q Clear(g_c), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Prop In Lane 1.00 0.33 1.00 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | | | | | | | | | | | | | 700 | | Grp Volume(v), veh/h Grp Volume(v), veh/h Grp Sat Flow(s), veh/h/ln 1781 1777 1750 1781 1777 1750 1781 1777 1684 1781 1702 1574 1781 1702 1577 Q Serve(g_s), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Cycle Q Clear(g_c), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Cycle Q Clear(g_c), veh/h 102 436 430 326 533 505 228 2207 786 188 2207 70 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | | | | | | | | | | | | | 0.86 | | Grp Sat Flow(s),veh/h/ln 1781 1777 1750 1781 1777 1684 1781 1702 1574 1781 1702 1574 1781 1702 1574 Q Serve(g_s), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. 0.0 20.9 27.0 5.0 34.9 0.4 4.9 19.2 0. 0.0 20.9 27.0 5.0 34.9 0.4 4.9 19.2 0. 0.0 1.00 | Sat Flow, veh/h | | | | | | | | | 1574 | | 5106 | 1574 | | Q Serve(g_s), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Cycle Q Clear(g_c), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Prop In Lane 1.00 0.33 1.00 0.54 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 102 436 430 326 533 505 228 2207 786 188 2207 70 V/C Ratio(X) 0.10 0.51 0.52 0.66 1.00 1.00 0.81 0.94 0.02 0.88 0.88 0.0 Avail Cap(c_a), veh/h 179 513 506 326 533 505 228 2207 786 188 2207 70 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | Grp Volume(v), veh/h | | | | | | | | | | | | 13 | | Cycle Q Clear(g_c), s 0.4 9.7 9.9 6.0 26.9 27.0 5.0 34.9 0.4 4.9 19.2 0. Prop In Lane 1.00 0.33 1.00 0.54 1.00 0.81 0.94 0.02 0.88 0.88 0.0 0.0 0.01 0.01 1.00 | Grp Sat Flow(s),veh/h/ln | 1781 | 1777 | | 1781 | | | 1781 | | 1574 | 1781 | | 1574 | | Prop In Lane 1.00 0.33 1.00 0.54 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 102 436 430 326 533 505 228 2207 786 188 2207 70 V/C Ratio(X) 0.10 0.51 0.52 0.66 1.00 1.00 0.81 0.94 0.02 0.88 0.88 0.0 Avail Cap(c_a), veh/h 179 513 506 326 533 505 228 2207 786 188 2207 70 HCM Platoon Ratio 1.00 | Q Serve(g_s), s | | 9.7 | | | | | | | | | | 0.1 | | Lane Grp Cap(c), veh/h 102 436 430 326 533 505 228 2207 786 188 2207 70 V/C Ratio(X) 0.10 0.51 0.52 0.66 1.00 1.00 0.81 0.94 0.02 0.88 0.88 0.0 Avail Cap(c_a), veh/h 179 513 506 326 533 505 228 2207 786 188 2207 70 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | Cycle Q Clear(g_c), s | | 9.7 | | | 26.9 | 27.0 | | 34.9 | | | 19.2 | 0.1 | | V/C Ratio(X) 0.10 0.51 0.52 0.66 1.00 1.00 0.81 0.94 0.02 0.88 0.88 0.0 Avail Cap(c_a), veh/h 179 513 506 326 533 505 228 2207 786 188 2207 70 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.0 | Prop In Lane | 1.00 | | 0.33 | 1.00 | | 0.54 | 1.00 | | 1.00 | 1.00 | | 1.00 | | Avail Cap(c_a), veh/h 179 513 506 326 533 505 228 2207 786 188 2207 70 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 | Lane Grp Cap(c), veh/h | 102 | 436 | 430 | 326 | 533 | 505 | 228 | 2207 | 786 | 188 | 2207 | 700 | | HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00
2.00 <td>V/C Ratio(X)</td> <td>0.10</td> <td>0.51</td> <td></td> <td>0.66</td> <td></td> <td>1.00</td> <td>0.81</td> <td>0.94</td> <td>0.02</td> <td>0.88</td> <td>0.88</td> <td>0.02</td> | V/C Ratio(X) | 0.10 | 0.51 | | 0.66 | | 1.00 | 0.81 | 0.94 | 0.02 | 0.88 | 0.88 | 0.02 | | Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.46 0.48 31.5 31.5 20.4 24.4 11.4 20.1 4.8 3. Incr polay (d), s/veh 0.0 0.9 1.0 4.9 38.6 39.8 19.9 9.4 0.0 19.2 2.6 0. Initial Q Delay(d3),s/veh 0.0 | Avail Cap(c_a), veh/h | 179 | 513 | 506 | 326 | 533 | 505 | 228 | 2207 | 786 | 188 | 2207 | 700 | | Uniform Delay (d), s/veh 27.6 29.3 29.3 26.8 31.5 31.5 20.4 24.4 11.4 20.1 4.8 3. Incr Delay (d2), s/veh 0.4 0.9 1.0 4.9 38.6 39.8 19.9 9.4 0.0 19.2 2.6 0. Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | | Incr Delay (d2), s/veh 0.4 0.9 1.0 4.9 38.6 39.8 19.9 9.4 0.0 19.2 2.6 0. Initial Q Delay(d3),s/veh 0.0 <td>Upstream Filter(I)</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td>0.46</td> <td>0.46</td> <td>0.46</td> | Upstream Filter(I) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.46 | 0.46 | 0.46 | | Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | Uniform Delay (d), s/veh | 27.6 | 29.3 | 29.3 | 26.8 | 31.5 | 31.5 | 20.4 | 24.4 | 11.4 | 20.1 | 4.8 | 3.3 | | %ile BackOfQ(95%),veh/ln 0.3 7.5 7.5 3.1 23.1 22.3 5.9 21.1 0.3 4.5 4.1 0. Unsig. Movement Delay, s/veh Veh/ln 28.0 30.2 30.3 31.7 70.1 71.3 40.2 33.8 11.5 39.3 7.4 3. LnGrp LOS C C C C E E D C B D A A Approach Vol, veh/h 454 1253 2273 2116 Approach Delay, s/veh 30.2 64.0 34.2 9.8 Approach LOS C E C A Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | Incr Delay (d2), s/veh | | | | 4.9 | | 39.8 | | | | 19.2 | 2.6 | 0.0 | | Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 28.0 30.2 30.3 31.7 70.1 71.3 40.2 33.8 11.5 39.3 7.4 3. LnGrp LOS C C C C E E D C B D A A Approach Vol, veh/h 454 1253 2273 2116 Approach Delay, s/veh 30.2 64.0 34.2 9.8 Approach LOS C E C A Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | Initial Q Delay(d3),s/veh | | | | | | | | | | | | 0.0 | | LnGrp Delay(d),s/veh 28.0 30.2 30.3 31.7 70.1 71.3 40.2 33.8 11.5 39.3 7.4 3. LnGrp LOS C C C C E E D C B D A A Approach Vol, veh/h 454 1253 2273 2116 Approach Delay, s/veh 30.2 64.0 34.2 9.8 Approach LOS C E C A Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | | | 7.5 | 7.5 | 3.1 | 23.1 | 22.3 | 5.9 | 21.1 | 0.3 | 4.5 | 4.1 | 0.1 | | LnGrp LOS C C C C C E E D C B D A Approach Vol, veh/h 454 1253 2273 2116 Approach Delay, s/veh 30.2 64.0 34.2 9.8 Approach LOS C E C A Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | | | | | | | | | | | | | | | Approach Vol, veh/h 454 1253 2273 2116 Approach Delay, s/veh 30.2 64.0 34.2 9.8 Approach LOS C E C A Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | | | | | | | | | | | | | 3.3 | | Approach Delay, s/veh 30.2 64.0 34.2 9.8 Approach LOS C E C A Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | LnGrp LOS | С | С | С | С | E | E | D | С | В | D | Α | A | | Approach LOS C E C A Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | Approach Vol, veh/h | | 454 | | | 1253 | | | 2273 | | | 2116 | | | Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | Approach Delay, s/veh | | 30.2 | | | 64.0 | | | 34.2 | | | 9.8 | | | Phs Duration (G+Y+Rc), s 9.0 43.9 5.1 32.0 9.0 43.9 10.0 27.1 | Approach LOS | | С | | | Е | | | С | | | Α | | | \mathcal{L} | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | | Phs Duration (G+Y+Rc), s | 9.0 | 43.9 | 5.1 | 32.0 | 9.0 | 43.9 | 10.0 | 27.1 | | | | | | | \ / / | | | | | | | | | | | | | | Max Green Setting (Gmax), s 5.0 * 35 5.0 * 27 5.0 * 35 6.0 * 26 | | | * 35 | 5.0 | * 27 | 5.0 | * 35 | | * 26 | | | | | | Max Q Clear Time (g_c+l1), s 7.0 21.2 2.4 29.0 6.9 36.9 8.0 11.9 | Max Q Clear Time (g c+l1), s | 7.0 | 21.2 | 2.4 | 29.0 | 6.9 | 36.9 | 8.0 | 11.9 | | | | | | Green Ext Time (p_c), s 0.0 10.5 0.0 0.0 0.0 0.0 0.0 2.3 | | | | | | | | | | | | | | | Intersection Summary | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay 31.5 | | | | 31.5 | | | | | | | | | | | HCM 6th LOS C | | | | | | | | | | | | | | ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | • | → | • | • | ← | • | 4 | † | / | - | ţ | 1 | |---|------|--------------|--------------|------|------------|------|--------------|--------------|--------------|--------------|--------------|--------------| | Movement | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ∱ β | | ሻ | ∱ ∱ | | ሻ | ተተተ | 7 | ሻ | ^ | 7 | | Traffic Volume (veh/h) | 100 | 350 | 100 | 210 | 430 | 240 | 150 | 1910 | 50 | 270 | 2000 | 70 | | Future Volume (veh/h) | 100 | 350 | 100 | 210 | 430 | 240 | 150 | 1910 | 50 | 270 | 2000 | 70 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 0.99 | | 0.97 | 0.99 | | 0.97 | 1.00 | | 0.98 | 1.00 | | 0.98 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | | No | | | No | | | No | | | No | | | Adj Sat Flow, veh/h/ln | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 | | Adj Flow Rate, veh/h | 102 | 357 | 70 | 214 | 439 | 153 | 153 | 1949 | 23 | 276 | 2041 | 34 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | | Cap, veh/h | 251 | 725 | 140 | 312 | 631 | 217 | 223 | 2094 | 726 | 248 | 2264 | 779 | | Arrive On Green | 0.06 | 0.25 | 0.25 | 0.06 | 0.25 | 0.25 | 0.06 | 0.41 | 0.41 | 0.18 | 0.89 | 0.89 | | Sat Flow, veh/h | 1781 | 2952 | 571 | 1781 | 2569 | 886 | 1781 | 5106 | 1556 | 1781 | 5106 | 1558 | | Grp Volume(v), veh/h | 102 | 213 | 214 | 214 | 302 | 290 | 153 | 1949 | 23 | 276 | 2041 | 34 | | Grp Sat Flow(s),veh/h/ln | 1781 | 1777 | 1746 | 1781 | 1777 | 1678 | 1781 | 1702 | 1556 | 1781 | 1702 | 1558 | | Q Serve(g_s), s | 3.8 | 9.3 | 9.5 | 5.0 | 13.9 | 14.2 | 4.5 | 32.8 | 0.7 | 8.0 | 20.3 | 0.2 | | Cycle Q Clear(g_c), s | 3.8 | 9.3 | 9.5 | 5.0 | 13.9 | 14.2 | 4.5 | 32.8 | 0.7 | 8.0 | 20.3 | 0.2 | | Prop In Lane | 1.00 | 400 | 0.33 | 1.00 | 400 | 0.53 | 1.00 | 0004 | 1.00 | 1.00 | 0004 | 1.00 | | Lane Grp Cap(c), veh/h | 251 | 436 | 429 | 312 | 436 | 412 | 223 | 2094 | 726 | 248 | 2264 | 779 | | V/C Ratio(X) | 0.41 | 0.49 | 0.50 | 0.69 | 0.69 | 0.70 | 0.69 | 0.93 | 0.03 | 1.11 | 0.90 | 0.04 | | Avail Cap(c_a), veh/h | 251 | 513 | 504 | 312 | 513 | 485 | 223 | 2094 | 726 | 248 | 2264 | 779 | | HCM Platoon Ratio | 1.00 | 1.00
1.00 | 1.00
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
1.00 | 1.00 | 2.00
0.34 | 2.00
0.34 | 2.00
0.34 | | Upstream Filter(I) Uniform Delay (d), s/veh | 24.6 | 29.1 | 29.2 | 29.8 | 30.9 | 31.0 | 1.00
18.8 | 25.3 | 1.00
13.0 | 19.5 | 4.0 | 2.3 | | Incr Delay (d2), s/veh | 1.1 | 0.8 | 0.9 | 6.1 | 3.2 | 31.0 | 8.6 | 9.0 | 0.1 | 67.9 | 2.3 | 0.0 | | Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | %ile BackOfQ(95%),veh/ln | 2.9 | 7.0 | 7.0 | 4.2 | 10.1 | 9.8 | 4.0 | 20.1 | 0.4 | 10.1 | 3.5 | 0.0 | | Unsig. Movement Delay, s/veh | | 1.0 | 7.0 | 4.2 | 10.1 | 9.0 | 4.0 | 20.1 | 0.4 | 10.1 | 3.3 | 0.1 | | LnGrp Delay(d),s/veh | 25.7 | 30.0 | 30.1 | 36.0 | 34.1 | 34.7 | 27.4 | 34.3 | 13.1 | 87.4 | 6.3 | 2.3 | | LnGrp LOS | C | C | C | D | C | C | C | C | В | 67.4
F | Α | 2.5
A | | Approach Vol, veh/h | | 529 | | | 806 | | | 2125 | | <u> </u> | 2351 | | | Approach Delay, s/veh | | 29.2 | | | 34.8 | | | 33.6 | | | 15.8 | | | Approach LOS | | 23.2
C | | | C | | | C | | | В | | | | | | | | | | | | | | D | | | Timer - Assigned Phs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | | | | Phs Duration (G+Y+Rc), s | 9.0 | 44.9 | 9.0 | 27.1 | 12.0 | 41.9 | 9.0 | 27.1 | | | | | | Change Period (Y+Rc), s | 4.0 | * 5 | 4.0 | * 5 | 4.0 | * 5 | 4.0 | * 5 | | | | | | Max Green Setting (Gmax), s | 5.0 | * 36 | 5.0 | * 26 | 8.0 | * 33 | 5.0 | * 26 | | | | | | Max Q Clear Time (g_c+l1), s | 6.5 | 22.3 | 5.8 | 16.2 | 10.0 | 34.8 | 7.0 | 11.5 | | | | | | Green Ext Time (p_c), s | 0.0 | 10.9 | 0.0 | 2.4 | 0.0 | 0.0 | 0.0 | 2.0 | | | | | | Intersection Summary | | | | | | | | | | | | | | HCM 6th Ctrl Delay | | | 26.2 | | | | | | | | | | | HCM 6th LOS | | | С | | | | | | | | | | ^{*} HCM 6th computational engine
requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type. | | ۶ | • | 4 | † | ļ | ✓ | |------------------------------|------|------|----------|----------|------|------| | Movement | EBL | EBR | NBL | NBT | SBT | SBR | | Lane Configurations | | וווו | ነነነነ | | 1111 | 7 | | Traffic Volume (veh/h) | 0 | 2570 | 1870 | 0 | 2250 | 10 | | Future Volume (veh/h) | 0 | 2570 | 1870 | 0 | 2250 | 10 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | 1.00 | 1.00 | | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | No | | | No | No | | | Adj Sat Flow, veh/h/ln | 0 | 1870 | 1870 | 0 | 1870 | 1870 | | Adj Flow Rate, veh/h | 0 | 2677 | 1948 | 0 | 2344 | 0 | | Peak Hour Factor | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | Percent Heavy Veh, % | 0.50 | 2 | 2 | 0.30 | 2 | 2 | | Cap, veh/h | 0 | 0 | 2542 | 0 | 0 | | | Arrive On Green | 0.00 | 0.00 | 0.39 | 0.00 | 0.00 | 0.00 | | Sat Flow, veh/h | 0.00 | 0.00 | 6484 | 1948 | 0.00 | 0.00 | | · | | | | | | | | Grp Volume(v), veh/h | 0.0 | | 1948 | 24.5 | 0.0 | | | Grp Sat Flow(s), veh/h/ln | | | 1621 | С | | | | Q Serve(g_s), s | | | 23.5 | | | | | Cycle Q Clear(g_c), s | | | 23.5 | | | | | Prop In Lane | | | 1.00 | | | | | Lane Grp Cap(c), veh/h | | | 2542 | | | | | V/C Ratio(X) | | | 0.77 | | | | | Avail Cap(c_a), veh/h | | | 3458 | | | | | HCM Platoon Ratio | | | 1.00 | | | | | Upstream Filter(I) | | | 1.00 | | | | | Uniform Delay (d), s/veh | | | 23.8 | | | | | Incr Delay (d2), s/veh | | | 0.7 | | | | | Initial Q Delay(d3),s/veh | | | 0.0 | | | | | %ile BackOfQ(95%),veh/ln | | | 13.4 | | | | | Unsig. Movement Delay, s/veh | | | | | | | | LnGrp Delay(d),s/veh | | | 24.5 | | | | | LnGrp LOS | | | С | | | | | Approach Vol, veh/h | | | | | | | | Approach Delay, s/veh | | | | | | | | Approach LOS | | | | | | | | Approach LOS | | | | | | | | Timer - Assigned Phs | | | 3 | | | | | Phs Duration (G+Y+Rc), s | | | 41.3 | | | | | Change Period (Y+Rc), s | | | * 6 | | | | | Max Green Setting (Gmax), s | | | * 48 | | | | | Max Q Clear Time (g_c+l1), s | | | 25.5 | | | | | Green Ext Time (p_c), s | | | 9.8 | | | | | ``` | | | 0.0 | | | | | Intersection Summary | | | <u> </u> | | | | | HCM 6th Ctrl Delay | | | 24.5 | | | | | HCM 6th LOS | | | С | | | | | Notes | | | | | | | Notes ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | | ۶ | • | 4 | † | ļ | 4 | |------------------------------|------|------|------|-----------|------|------| | Movement | EBL | EBR | NBL | NBT | SBT | SBR | | Lane Configurations | | וווו | ነነነነ | | 1111 | 7 | | Traffic Volume (veh/h) | 0 | 2770 | 1730 | 0 | 2340 | 20 | | Future Volume (veh/h) | 0 | 2770 | 1730 | 0 | 2340 | 20 | | Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | | Ped-Bike Adj(A_pbT) | 1.00 | 1.00 | 1.00 | | | 1.00 | | Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | Work Zone On Approach | No | | | No | No | | | Adj Sat Flow, veh/h/ln | 0 | 1870 | 1870 | 0 | 1870 | 1870 | | Adj Flow Rate, veh/h | 0 | 2827 | 1765 | 0 | 2388 | 0 | | Peak Hour Factor | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | | Percent Heavy Veh, % | 0 | 2 | 2 | 0 | 2 | 2 | | Cap, veh/h | 0 | 0 | 2320 | 0 | 0 | _ | | Arrive On Green | 0.00 | 0.00 | 0.36 | 0.00 | 0.00 | 0.00 | | Sat Flow, veh/h | 0.00 | 0.00 | 6484 | 1765 | 0.00 | 0.00 | | | 0.0 | | 1765 | 26.1 | 0.0 | | | Grp Volume(v), veh/h | 0.0 | | | 26.1
C | 0.0 | | | Grp Sat Flow(s), veh/h/ln | | | 1621 | U | | | | Q Serve(g_s), s | | | 21.6 | | | | | Cycle Q Clear(g_c), s | | | 21.6 | | | | | Prop In Lane | | | 1.00 | | | | | Lane Grp Cap(c), veh/h | | | 2320 | | | | | V/C Ratio(X) | | | 0.76 | | | | | Avail Cap(c_a), veh/h | | | 3444 | | | | | HCM Platoon Ratio | | | 1.00 | | | | | Upstream Filter(I) | | | 1.00 | | | | | Uniform Delay (d), s/veh | | | 25.5 | | | | | Incr Delay (d2), s/veh | | | 0.6 | | | | | Initial Q Delay(d3),s/veh | | | 0.0 | | | | | %ile BackOfQ(95%),veh/ln | | | 12.6 | | | | | Unsig. Movement Delay, s/veh | | | | | | | | LnGrp Delay(d),s/veh | | | 26.1 | | | | | LnGrp LOS | | | С | | | | | Approach Vol, veh/h | | | | | | | | Approach Delay, s/veh | | | | | | | | Approach LOS | | | | | | | | • | | | | | | | | Timer - Assigned Phs | | | 3 | | | | | Phs Duration (G+Y+Rc), s | | | 38.4 | | | | | Change Period (Y+Rc), s | | | * 6 | | | | | Max Green Setting (Gmax), s | | | * 48 | | | | | Max Q Clear Time (g_c+I1), s | | | 23.6 | | | | | Green Ext Time (p_c), s | | | 8.8 | | | | | Intersection Summary | | | | | | | | | | | OC 4 | | | | | HCM 6th Ctrl Delay | | | 26.1 | | | | | HCM 6th LOS | | | С | | | | | Notos | | | | | | | ### Notes ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay. | | • | • | † | / | > | ↓ | | | | |--|------------|-----------|-----------|---------|--------------|------------------|----------|----------|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | | Lane Configurations | | 7 | 1111 | 7 | ሻሻ | 1111 | | | | | Traffic Volume (vph) | 0 | 450 | 3830 | 260 | 120 | 2640 | | | | | Future Volume (vph) | 0 | 450 | 3830 | 260 | 120 | 2640 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 4.0 | 5.0 | 5.0 | 4.0 | 4.0 | | | | | Lane Util. Factor | | 1.00 | 0.86 | 1.00 | 0.97 | 0.86 | | | | | Frpb, ped/bikes | | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Frt | | 0.86 | 1.00 | 0.85 | 1.00 | 1.00 | | | | | Flt Protected | | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | | | Satd. Flow (prot) | | 1611 | 6408 | 1512 | 3433 | 6408 | | | | | Flt Permitted | | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | | | Satd. Flow (perm) | | 1611 | 6408 | 1512 | 3433 | 6408 | | | | | Peak-hour factor, PHF | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | | | Adj. Flow (vph) | 0 | 469 | 3990 | 271 | 125 | 2750 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 77 | 0 | 0 | | | | | Lane Group Flow (vph) | 0 | 469 | 3990 | 194 | 125 | 2750 | | | | | Confl. Peds. (#/hr) | | | | 15 | 0 | | | | | | Turn Type | | Over | NA | Perm | Prot | NA | | | | | Protected Phases | | 1 | 2 | 1 01111 | 1 | Free | | | | | Permitted Phases | | • | _ | 2 | • | 1100 | | | | | Actuated Green, G (s) | | 35.0 | 76.0 | 76.0 | 35.0 | 120.0 | | | | | Effective Green, g (s) | | 35.0 | 76.0 | 76.0 | 35.0 | 120.0 | | | | | Actuated g/C Ratio | | 0.29 | 0.63 | 0.63 | 0.29 | 1.00 | | | | | Clearance Time (s) | | 4.0 | 5.0 | 5.0 | 4.0 | 1.00 | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | | 469 | 4058 | 957 | 1001 | 6408 | | | | | v/s Ratio Prot | | c0.29 | c0.62 | 931 | 0.04 | 0.43 | | | | | v/s Ratio Perm | | 60.29 | CU.UZ | 0.13 | 0.04 | 0.43 | | | | | v/c Ratio | | 1.00 | 0.98 | 0.13 | 0.12 | 0.43 | | | | | | | 42.5 | 21.4 | 9.3 | 31.2 | 0.43 | | | | | Uniform Delay, d1 | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Progression Factor | | 41.6 | 1.00 | 0.5 | 0.1 | 0.2 | | | | | Incremental Delay, d2 | | 84.1 | 32.1 | 9.7 | 31.3 | 0.2 | | | | | Delay (s) | | 84.1
F | 32.1
C | | 31.3
C | | | | | | Level of Service
Approach Delay (s) | 84.1 | F | 30.7 | Α | U | A
1.6 | | | | | Approach LOS | 04.1
F | | 30.7
C | | | A | | | | | Intersection Summary | | | | | | | | | | | HCM 2000 Control Delay | | | 23.0 | Н | CM 2000 | Level of Service | <u> </u> | С | | | HCM 2000 Volume to Capa | city ratio | | 0.99 | 11 | <u>-</u> 000 | | · | | | | Actuated Cycle Length (s) | July 1000 | | 120.0 | Sı | um of lost | time (s) | | 9.0 | | | Intersection Capacity Utiliza | ntion | | 90.9% | | | of Service | | 5.0
E | | | Analysis Period (min) | a.Jii | | 15 | 10 | O LOVOI (| J. 3011100 | | | | | c Critical Lane Group | | | 10 | | | | | | | | o ontiour Lane Oroup | | | | | | | | | | | | • | • | † | ~ | - | ↓ | | | | |-------------------------------|------------|-------|----------|------|------------|------------------|---|----|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | | Lane Configurations | | # | 1111 | 7 | ሻሻ | 1111 | | | | | Traffic Volume (vph) | 0 | 550 | 3750 | 300 | 60 | 2650 | | | | | Future Volume (vph) | 0 | 550 | 3750 | 300 | 60 | 2650 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 4.0 | 5.0 | 5.0 | 4.0 | 4.0 | | | | | Lane Util. Factor | | 1.00 | 0.86 | 1.00 | 0.97 | 0.86 | | | | | Frpb, ped/bikes | | 1.00 | 1.00 | 0.92 | 1.00 | 1.00 | | | | | Flpb, ped/bikes | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Frt | | 0.86 | 1.00 | 0.85 | 1.00 | 1.00 | | | | | Flt Protected | | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | | | Satd. Flow (prot) | | 1611 | 6408 | 1460 | 3433 | 6408 | | | | | Flt Permitted | | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | | | | | Satd. Flow (perm) | | 1611 | 6408 | 1460 | 3433 | 6408 | | | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | | | | Adj. Flow (vph) | 0 | 567 | 3866 | 309 | 62 | 2732 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 91 | 0 | 0 | | | | | Lane Group Flow (vph) | 0 | 567 | 3866 | 218 | 62 | 2732 | | | | | Confl. Peds. (#/hr) | | | | 30 | | | | | | | Turn Type | | Over | NA | Perm | Prot | NA | | | | | Protected Phases | | 1 | 2 | | 1 | Free | | | | | Permitted Phases | | | | 2 | | | | | | | Actuated Green, G (s) | | 41.0 | 70.0 | 70.0 | 41.0 | 120.0 | | | | | Effective Green, g (s) | | 41.0 | 70.0 | 70.0 | 41.0 | 120.0 | | | | | Actuated g/C Ratio | | 0.34 | 0.58 | 0.58 | 0.34 | 1.00 | | | | | Clearance Time (s) | | 4.0 | 5.0 | 5.0 | 4.0 | | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | 3.0 | 3.0 | | | | | | Lane Grp Cap (vph) | |
550 | 3738 | 851 | 1172 | 6408 | | | | | v/s Ratio Prot | | c0.35 | c0.60 | | 0.02 | 0.43 | | | | | v/s Ratio Perm | | | | 0.15 | | | | | | | v/c Ratio | | 1.03 | 1.03 | 0.26 | 0.05 | 0.43 | | | | | Uniform Delay, d1 | | 39.5 | 25.0 | 12.2 | 26.5 | 0.0 | | | | | Progression Factor | | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Incremental Delay, d2 | | 46.5 | 24.5 | 0.7 | 0.0 | 0.2 | | | | | Delay (s) | | 86.0 | 49.5 | 13.0 | 26.5 | 0.2 | | | | | Level of Service | | F | D | В | С | Α | | | | | Approach Delay (s) | 86.0 | | 46.8 | | | 0.8 | | | | | Approach LOS | F | | D | | | Α | | | | | Intersection Summary | | | | | | | | | | | HCM 2000 Control Delay | | | 32.7 | H | CM 2000 | Level of Service | | С | | | HCM 2000 Volume to Capac | city ratio | | 1.03 | | | | | | | | Actuated Cycle Length (s) | ., | | 120.0 | Sı | um of lost | time (s) | g | .0 | | | Intersection Capacity Utiliza | tion | | 95.9% | | | of Service | | F | | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | | | | | | | | | | | • | • | † | <i>></i> | > | ↓ | | | |-------------------------------|------------|-----------|--|-------------|-------------|------------------|------|---| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | Lane Configurations | ሻሻ | 77 | ###################################### | | | 1111 | | _ | | Traffic Volume (vph) | 400 | 540 | 3700 | 90 | 0 | 2640 | | | | Future Volume (vph) | 400 | 540 | 3700 | 90 | 0 | 2640 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | 6.1 | 6.1 | 5.0 | | | 5.0 | | | | Lane Util. Factor | 0.97 | 0.88 | 0.86 | | | 0.86 | | | | Frpb, ped/bikes | 1.00 | 0.92 | 1.00 | | | 1.00 | | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | | 1.00 | | | | Frt | 1.00 | 0.85 | 1.00 | | | 1.00 | | | | Flt Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | Satd. Flow (prot) | 3433 | 2552 | 6385 | | | 6408 | | | | FIt Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | Satd. Flow (perm) | 3433 | 2552 | 6385 | | | 6408 | | | | Peak-hour factor, PHF | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | | Adj. Flow (vph) | 417 | 562 | 3854 | 94 | 0.00 | 2750 | | | | RTOR Reduction (vph) | 0 | 0 | 2 | 0 | 0 | 0 | | | | Lane Group Flow (vph) | 417 | 563 | 3946 | 0 | 0 | 2750 | | | | Confl. Peds. (#/hr) | | 80 | 00.10 | | | 2.00 | | | | Turn Type | Perm | Perm | NA | | | NA | | | | Protected Phases | 1 Cilli | 1 Cilli | 2 | | | 2 | | | | Permitted Phases | 4 | 4 | | | | | | | | Actuated Green, G (s) | 32.3 | 32.3 | 76.6 | | | 76.6 | | | | Effective Green, g (s) | 32.3 | 32.3 | 76.6 | | | 76.6 | | | | Actuated g/C Ratio | 0.27 | 0.27 | 0.64 | | | 0.64 | | | | Clearance Time (s) | 6.1 | 6.1 | 5.0 | | | 5.0 | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | | 3.0 | | | | Lane Grp Cap (vph) | 924 | 686 | 4075 | | | 4090 | | | | v/s Ratio Prot | 324 | 000 | c0.62 | | | 0.43 | | | | v/s Ratio Perm | 0.12 | c0.22 | 60.02 | | | 0.43 | | | | v/c Ratio | 0.12 | 0.82 | 0.97 | | | 0.67 | | | | | 36.5 | 41.1 | 20.6 | | | 13.7 | | | | Uniform Delay, d1 | 1.00 | 1.00 | 1.00 | | | 1.00 | | | | Progression Factor | 0.4 | 7.8 | 8.5 | | | 0.9 | | | | Incremental Delay, d2 | 36.8 | 48.9 | 29.0 | | | 14.6 | | | | Delay (s)
Level of Service | 30.0
D | 40.9
D | 29.0
C | | | 14.0
B | | | | Approach Delay (s) | 43.8 | U | 29.0 | | | 14.6 | | | | Approach LOS | 43.6
D | | 29.0
C | | | B | | | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 25.8 | H | CM 2000 | Level of Service | С | | | HCM 2000 Volume to Capa | city ratio | | 0.92 | | | | | | | Actuated Cycle Length (s) | , | | 120.0 | Sı | um of lost | time (s) | 11.1 | | | Intersection Capacity Utiliza | ition | | 96.3% | | | of Service | F | | | Analysis Period (min) | | | 15 | | | | | | | c Critical Lane Group | | | - | | | | | | | | • | • | † | / | > | ↓ | | | | |--|-------------|---------|-----------|------|-------------|------------------|----------|-----|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | | Lane Configurations | ሻሻ | 77 | 4111 | | | 1111 | | | | | Traffic Volume (vph) | 590 | 320 | 3720 | 30 | 0 | 2650 | | | | | Future Volume (vph) | 590 | 320 | 3720 | 30 | 0 | 2650 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | 6.1 | 6.1 | 5.0 | | | 5.0 | | | | | Lane Util. Factor | 0.97 | 0.88 | 0.86 | | | 0.86 | | | | | Frpb, ped/bikes | 1.00 | 0.91 | 1.00 | | | 1.00 | | | | | Flpb, ped/bikes | 1.00 | 1.00 | 1.00 | | | 1.00 | | | | | Frt | 1.00 | 0.85 | 1.00 | | | 1.00 | | | | | Flt Protected | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | | Satd. Flow (prot) | 3433 | 2526 | 6400 | | | 6408 | | | | | Flt Permitted | 0.95 | 1.00 | 1.00 | | | 1.00 | | | | | Satd. Flow (perm) | 3433 | 2526 | 6400 | | | 6408 | | | | | Peak-hour factor, PHF | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | | | Adj. Flow (vph) | 615 | 333 | 3875 | 31 | 0.30 | 2760 | | | | | RTOR Reduction (vph) | 0 | 0 | 1 | 0 | 0 | 0 | | | | | Lane Group Flow (vph) | 615 | 333 | 3905 | 0 | 0 | 2760 | | | | | Confl. Peds. (#/hr) | 010 | 90 | 0000 | | <u> </u> | 2700 | | | | | Turn Type | Perm | Perm | NA | | | NA | | | | | Protected Phases | I GIIII | i Giiii | 2 | | | 2 | | | | | Permitted Phases | 4 | 4 | L | | | 2 | | | | | Actuated Green, G (s) | 27.9 | 27.9 | 81.0 | | | 81.0 | | | | | Effective Green, g (s) | 27.9 | 27.9 | 81.0 | | | 81.0 | | | | | Actuated g/C Ratio | 0.23 | 0.23 | 0.68 | | | 0.68 | | | | | Clearance Time (s) | 6.1 | 6.1 | 5.0 | | | 5.0 | | | | | Vehicle Extension (s) | 3.0 | 3.0 | 3.0 | | | 3.0 | | | | | | 798 | | | | | | | | | | Lane Grp Cap (vph) | 798 | 587 | 4320 | | | 4325 | | | | | v/s Ratio Prot
v/s Ratio Perm | -0.10 | 0.13 | c0.61 | | | 0.43 | | | | | | c0.18 | | 0.00 | | | 0.64 | | | | | v/c Ratio | 0.77 | 0.57 | 0.90 | | | 0.64 | | | | | Uniform Delay, d1 | 43.1 | 40.7 | 16.3 | | | 11.1 | | | | | Progression Factor | 1.00 | 1.00 | 1.00 | | | 1.00 | | | | | Incremental Delay, d2 | 4.6 | 1.3 | 3.6 | | | 0.7 | | | | | Delay (s) | 47.7 | 42.0 | 19.9 | | | 11.9 | | | | | Level of Service | D | D | B | | | B | | | | | Approach Delay (s) Approach LOS | 45.7
D | | 19.9
B | | | 11.9
B | | | | | Intersection Summary | | | | | | - | | | | | HCM 2000 Control Delay | | | 20.2 | Ш | CM 2000 | Level of Service | | С | | | • | acity ratio | | 0.87 | П | CIVI 2000 | revel of Selvice | | U | | | HCM 2000 Volume to Capa
Actuated Cycle Length (s) | acity ratio | | 120.0 | C. | um of loof | timo (s) | 4 | 1.1 | | | , , | ation | | | | um of lost | of Service | <u> </u> | F | | | Intersection Capacity Utiliza | auUII | | 95.4% | IC | o Level (| of Service | | Г | | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | | | | | | | | | | | € | • | † | ~ | - | ↓ | | | | |-------------------------------|-------------|---------|----------|------|------------|-------------------|---|-----|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | | Lane Configurations | | 777 | ^ | | | ^ | | | | | Traffic Volume (vph) | 0 | 2610 | 2390 | 0 | 0 | 3290 | | | | | Future Volume (vph) | 0 | 2610 | 2390 | 0 | 0 | 3290 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 3.0 | 4.0 | | | 4.0 | | | | | Lane Util. Factor | | 0.76 | 0.91 | | | 0.95 | | | | | Frt | | 0.85 | 1.00 | | | 1.00 | | | | | Flt Protected | | 1.00 | 1.00 | | | 1.00 | | | | | Satd. Flow (prot) | | 3610 | 5085 | | | 3539 | | | | | Flt Permitted | | 1.00 | 1.00 | | | 1.00 | | | | | Satd. Flow (perm) | | 3610 | 5085 | | | 3539 | | | | | Peak-hour factor, PHF | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | | | | | Adj. Flow (vph) | 0.50 | 2747 | 2516 | 0.50 | 0.50 | 3463 | | | | | RTOR Reduction (vph) | 0 | 0 | 0 | 0 | 0 | 0 | | | | | Lane Group Flow (vph) | 0 | 2747 | 2516 | 0 | 0 | 3463 | | | | | Turn Type | <u> </u> | Perm | NA | | | NA | | | | | Protected Phases | | 1 Cilli | 2 | | | IVA | | | | | Permitted Phases | | 8 | | | | 28 | | | | | Actuated Green, G (s) | | 49.0 | 34.0 | | | 90.0 | | | | | Effective Green, g (s) | | 49.0 | 34.0 | | | 87.0 | | | | | Actuated g/C Ratio | | 0.54 | 0.38 | | | 0.97 | | | | | Clearance Time (s) | | 3.0 | 4.0 | | | 0.01 | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | | | | | | | Lane Grp Cap (vph) | | 1965 | 1921 | | | 3421 | | | | | v/s Ratio Prot | | 1300 | c0.49 | | | 0 1 21 | | | | | v/s Ratio Perm | | c0.76 | 60.45 | | | 0.98 | | | | | v/c Ratio | | 1.40 | 1.31 | | | 1.01 | | | | | Uniform Delay, d1 | | 20.5 | 28.0 | | | 1.5 | | | | | Progression Factor | | 1.00 | 1.00 | | | 1.00 | | | | | Incremental Delay, d2 | | 182.2 | 143.2 | | | 18.5 | | | | | Delay (s) | | 202.7 | 171.2 | | | 20.0 | | | | | Level of Service | | F | F | | | В | | | | | Approach Delay (s) | 202.7 | | 171.2 | | | 20.0 | | | | | Approach LOS | F | | F | | | В | | | | | Intersection Summary | | | | | | | | | | | HCM 2000 Control Delay | | | 121.1 | H | CM 2000 | Level of Service |) | F | | | HCM 2000 Volume to Capa | acity ratio | | 1.36 | | | | | | | | Actuated Cycle Length (s) | | | 90.0 | Sı | um of lost | time (s) | | 7.0 | | | Intersection Capacity Utiliza | ation | | 113.7% | | | of Service | | Н | | | Analysis Period (min) | | | 15 | | | | | | | | 0.10. 11. 0 | | | | | | | | | | | | € | * | † | ~ | - | ↓ | | | | |-------------------------------|------------|---------|----------|------|------------|-----------------|---|-----|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | | Lane Configurations | | 777 | ^ | | | ^ | | | | | Traffic Volume (vph) | 0 | 2290 | 2780 | 0 | 0 | 3010 | | | | | Future Volume (vph) | 0 | 2290 | 2780 | 0 | 0 | 3010 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 4.0 | 4.0 | | | 4.0 | |
		Lane Util. Factor		0.76	0.91			0.95					Frt		0.85	1.00			1.00					Flt Protected		1.00	1.00			1.00					Satd. Flow (prot)		3610	5085			3539					Flt Permitted		1.00	1.00			1.00					Satd. Flow (perm)		3610	5085			3539					Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94					Adj. Flow (vph)	0.54	2436	2957	0.54	0.54	3202					RTOR Reduction (vph)	0	0	0	0	0	0					Lane Group Flow (vph)	0	2436	2957	0	0	3202					Turn Type		Perm	NA			NA					Protected Phases		1 Cilli	2			IWA					Permitted Phases		8				28					Actuated Green, G (s)		44.0	39.0			90.0					Effective Green, g (s)		43.0	39.0			87.0					Actuated g/C Ratio		0.48	0.43			0.97					Clearance Time (s)		3.0	4.0			0.07					Vehicle Extension (s)		3.0	3.0								Lane Grp Cap (vph)		1724	2203			3421					v/s Ratio Prot		1127	c0.58			0421					v/s Ratio Perm		c0.67	00.00			0.90					v/c Ratio		1.41	1.34			0.94					Uniform Delay, d1		23.5	25.5			0.5					Progression Factor		1.00	1.00			1.00					Incremental Delay, d2		189.4	157.2			5.7					Delay (s)		212.9	182.7			6.2					Level of Service		F F	F			A					Approach Delay (s)	212.9		182.7			6.2					Approach LOS	F F		F			A					Intersection Summary											HCM 2000 Control Delay			125.5	Н	CM 2000	Level of Servic	9	F			HCM 2000 Volume to Capa	city ratio		1.36								Actuated Cycle Length (s)	_		90.0	Sı	um of lost	time (s)		7.0			Intersection Capacity Utiliza	ation		113.8%			of Service		Н			Analysis Period (min)			15								0 ''' 11 0												۶	→	•	•	←	•	4	†	/	>	↓	1		------------------------------	------	-------------	------	------	----------	------	------	----------	------	-------------	----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻሻ	† ††	7	777	ተተተ	7	ሻ	^	77	ሻሻ	4111			Traffic Volume (veh/h)	250	360	220	210	200	400	200	1740	600	600	2680	10		Future Volume (veh/h)	250	360	220	210	200	400	200	1740	600	600	2680	10		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	272	391	27	228	217	393	217	1891	365	652	2913	10		Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	269	863	268	299	908	581	218	1929	1054	653	2964	10		Arrive On Green	0.08	0.17	0.17	0.09	0.18	0.18	0.12	0.38	0.38	0.19	0.44	0.44		Sat Flow, veh/h	3456	5106	1585	3456	5106	1585	1781	5106	2790	3456	6669	23		Grp Volume(v), veh/h	272	391	27	228	217	393	217	1891	365	652	2107	816		Grp Sat Flow(s),veh/h/ln	1728	1702	1585	1728	1702	1585	1781	1702	1395	1728	1609	1866		Q Serve(g_s), s	7.0	6.2	1.3	5.8	3.3	16.0	11.0	32.9	8.4	17.0	38.8	38.8		Cycle Q Clear(g_c), s	7.0	6.2	1.3	5.8	3.3	16.0	11.0	32.9	8.4	17.0	38.8	38.8		Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.01		Lane Grp Cap(c), veh/h	269	863	268	299	908	581	218	1929	1054	653	2145	829		V/C Ratio(X)	1.01	0.45	0.10	0.76	0.24	0.68	1.00	0.98	0.35	1.00	0.98	0.98		Avail Cap(c_a), veh/h	269	863	268	307	908	581	218	1929	1054	653	2145	829		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	41.5	33.7	31.6	40.2	31.8	24.0	39.5	27.7	20.0	36.5	24.7	24.7		Incr Delay (d2), s/veh	58.0	0.4	0.2	10.4	0.1	3.1	60.0	16.3	0.9	34.9	15.8	27.4		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	8.7	4.5	0.9	5.1	2.4	11.4	13.0	21.8	4.9	15.3	23.2	29.6		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	99.5	34.0	31.8	50.6	31.9	27.1	99.5	44.0	20.9	71.4	40.4	52.1		LnGrp LOS	F	С	С	D	С	С	F	D	С	Е	D	D		Approach Vol, veh/h		690			838			2473			3575			Approach Delay, s/veh		59.7			34.8			45.5			48.7			Approach LOS		Е			С			D			D			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	21.0	38.0	11.8	19.2	15.0	44.0	11.0	20.0						Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0						Max Green Setting (Gmax), s	17.0	34.0	8.0	15.0	11.0	40.0	7.0	16.0						Max Q Clear Time (g_c+l1), s	19.0	34.9	7.8	8.2	13.0	40.8	9.0	18.0						Green Ext Time (p_c), s	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0						.,	0.0	0.0	0.0	1.7	0.0	0.0	0.0	0.0						Intersection Summary			17.1											HCM 6th LCC			47.1											HCM 6th LOS			D											Notes													User approved changes to right turn type.		ၨ	→	•	•	←	•	•	†	~	>	ļ	4		------------------------------	------	----------	------	-------	---	----------	----------	----------	------	-------------	-----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻሻ	ተተተ	7	1,1	ተተተ	7	ሻ	ተተተ	77	44	####			Traffic Volume (veh/h)	220	340	170	340	390	600	290	1960	960	560	2420	30		Future Volume (veh/h)	220	340	170	340	390	600	290	1960	960	560	2420	30		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	229	354	19	354	406	583	302	2042	713	583	2521	29		Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	300	898	276	307	908	544	297	1996	1078	576	2582	30		Arrive On Green	0.09	0.18	0.18	0.09	0.18	0.18	0.17	0.39	0.39	0.17	0.39	0.39		Sat Flow, veh/h	3456	5106	1572	3456	5106	1572	1781	5106	2758	3456	6605	76		Grp Volume(v), veh/h	229	354	19	354	406	583	302	2042	713	583	1841	709		Grp Sat Flow(s),veh/h/ln	1728	1702	1572	1728	1702	1572	1781	1702	1379	1728	1609	1856		Q Serve(g_s), s	5.8	5.5	0.9	8.0	6.4	16.0	15.0	35.2	19.1	15.0	33.8	33.9		Cycle Q Clear(g_c), s	5.8	5.5	0.9	8.0	6.4	16.0	15.0	35.2	19.1	15.0	33.8	33.9		Prop In Lane	1.00	0.0	1.00	1.00	• • • • • • • • • • • • • • • • • • • •	1.00	1.00	00.2	1.00	1.00	00.0	0.04		Lane Grp Cap(c), veh/h	300	898	276	307	908	544	297	1996	1078	576	1886	725		V/C Ratio(X)	0.76	0.39	0.07	1.15	0.45	1.07	1.02	1.02	0.66	1.01	0.98	0.98		Avail Cap(c_a), veh/h	307	908	279	307	908	544	297	1996	1078	576	1886	725		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	40.2	32.8	30.9	41.0	33.1	29.5	37.5	27.4	22.5	37.5	27.0	27.0		Incr Delay (d2), s/veh	10.5	0.3	0.1	99.2	0.3	59.5	56.7	26.2	3.2	40.6	15.8	28.2		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	5.1	4.0	0.6	12.6	4.6	28.1	16.6	25.5	10.3	14.5	21.1	26.8		Unsig. Movement Delay, s/veh	0.1	1.0	0.0	12.0	1.0	20.1	10.0	20.0	10.0	11.0		20.0		LnGrp Delay(d),s/veh	50.7	33.1	31.0	140.2	33.4	89.0	94.2	53.6	25.7	78.1	42.8	55.3		LnGrp LOS	D	C	C	F	C	F	F	F	C	F	D	E		Approach Vol, veh/h		602		•	1343	<u> </u>	<u> </u>	3057		•	3133			Approach Delay, s/veh		39.8			85.7			51.1			52.2			Approach LOS		D D			65.7 F			D			52.2 D														U			Timer - Assigned Phs	1	2	3	4	5	6	7	8																																																																																																																	
	Phs Duration (G+Y+Rc), s	19.0	39.2	12.0	19.8	19.0	39.2	11.8	20.0						Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0						Max Green Setting (Gmax), s	15.0	35.0	8.0	16.0	15.0	35.0	8.0	16.0						Max Q Clear Time (g_c+I1), s	17.0	37.2	10.0	7.5	17.0	35.9	7.8	18.0						Green Ext Time (p_c), s	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0						Intersection Summary														HCM 6th Ctrl Delay			56.4											HCM 6th LOS			Е											Notes													User approved changes to right turn type.		۶	→	•	•	←	•	4	†	/	/	Ţ	4		-------------------------------------	-------------	--------------	--------------	-------------	--------------	--------------	-------------	-------------	-------------	-------------	--------------	---------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ ⊅		ሻ	ተኈ		ሻ	•	7	7	∱ ⊅			Traffic Volume (veh/h)	50	650	300	30	1310	30	370	20	100	40	10	10		Future Volume (veh/h)	50	650	300	30	1310	30	370	20	100	40	10	10		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	0.96		0.95		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070		Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	52	670	263	31	1351	30	381	21	71	41	10	1		Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2 21		Cap, veh/h Arrive On Green	206 0.51	1257 0.51	493 0.51	327 0.03	2060 0.58	46 0.58	396 0.22	620 0.33	568 0.33	161 0.06	211	0.06		Sat Flow, veh/h	392	2488	977	1781		79	1781	1870	1571	1251	0.06 3253	318							3554									Grp Volume(v), veh/h	52	478	455	31	675	706	381	21	71	41	5	4705		Grp Sat Flow(s),veh/h/ln	392	1777	1688	1781	1777	1856	1781	1870	1571	1251	1777	1795		Q Serve(g_s), s	9.3	16.4	16.4 16.4	0.7 0.7	23.2	23.2 23.2	19.0	0.7	2.7 2.7	2.9	0.3	0.3		Cycle Q Clear(g_c), s	25.9	16.4	0.58	1.00	23.2	0.04	19.0	0.7		2.9	0.3	0.3		Prop In Lane	1.00 206	898	853	327	1030	1076	1.00 396	620	1.00 568	1.00 161	115	116		Lane Grp Cap(c), veh/h V/C Ratio(X)	0.25	0.53	0.53	0.09	0.66	0.66	0.96	0.03	0.12	0.25	0.05	0.05		Avail Cap(c_a), veh/h	206	898	853	373	1030	1076	396	956	850	386	434	439		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	23.9	15.1	15.1	11.0	12.8	12.8	34.6	20.3	19.2	40.7	39.5	39.5		Incr Delay (d2), s/veh	2.9	2.3	2.4	0.1	3.3	3.1	35.4	0.0	0.1	0.8	0.2	0.2		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	1.8	10.7	10.3	0.5	13.6	14.1	17.6	0.5	1.8	1.6	0.2	0.2		Unsig. Movement Delay, s/veh				0.0				0.0			V. <u>-</u>	0.1		LnGrp Delay(d),s/veh	26.8	17.3	17.5	11.1	16.1	16.0	70.1	20.4	19.3	41.5	39.6	39.6		LnGrp LOS	С	В	В	В	В	В	Е	С	В	D	D	D		Approach Vol, veh/h		985			1412			473			52			Approach Delay, s/veh		17.9			15.9			60.2			41.1			Approach LOS		В			В			Е			D			Timer - Assigned Phs		2	3	4	5	6		8						Phs Duration (G+Y+Rc), s		56.2	24.0	9.8	6.7	49.5		33.8						Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	49.5		4.0						Max Green Setting (Gmax), s		36.0	20.0	22.0	5.0	27.0		46.0						Max Q Clear Time (g_c+l1), s		25.2	21.0	4.9	2.7	27.9		4.7						Green Ext Time (p_c), s		6.3	0.0	0.1	0.0	0.0		0.3						``		0.0	0.0	0.1	0.0	0.0		0.0						Intersection Summary			04.0											HCM 6th Ctrl Delay			24.2											HCM 6th LOS			С										User approved pedestrian interval to be less than phase max green. User approved changes to right turn type.		۶	→	•	•	←	•	4	†	/	>	ţ	4		------------------------------	------	------------	------	------	------------	------	-------	----------	------	-------------	-------------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	↑ ↑		ሻ	↑ ↑		ሻ	1	7	ሻ	↑ 1>			Traffic Volume (veh/h)	50	400	300	60	1000	30	690	20	240	120	30	40		Future Volume (veh/h)	50	400	300	60	1000	30	690	20	240	120	30	40		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	0.98		0.97		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	52	412	164	62	1031	29	711	21	195	124	31	19		Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	190	871	342	342	1550	44	495	883	810	251	327	180		Arrive On Green	0.35	0.35	0.35	0.04	0.44	0.44	0.28	0.47	0.47	0.15	0.15	0.15		Sat Flow, veh/h	532	2481	976	1781	3529	99	1781	1870	1570	1139	2184	1202		Grp Volume(v), veh/h	52	294	282	62	519	541	711	21	195	124	25	25		Grp Sat Flow(s),veh/h/ln	532	1777	1680	1781	1777	1851	1781	1870	1570	1139	1777	1610		Q Serve(g_s), s	7.7	11.6	11.8	1.9	20.8	20.8	25.0	0.5	6.2	9.3	1.1	1.2		Cycle Q Clear(g_c), s	20.6	11.6	11.8	1.9	20.8	20.8	25.0	0.5	6.2	9.3	1.1	1.2		Prop In Lane	1.00		0.58	1.00	_0.0	0.05	1.00	0.0	1.00	1.00		0.75		Lane Grp Cap(c), veh/h	190	624	590	342	780	813	495	883	810	251	266	241		V/C Ratio(X)	0.27	0.47	0.48	0.18	0.67	0.67	1.44	0.02	0.24	0.49	0.09	0.11		Avail Cap(c_a), veh/h	190	624	590	363	780	813	495	1060	959	359	434	394		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	31.3	22.7	22.8	17.0	20.0	20.0	32.5	12.7	12.1	36.5	33.0	33.1		Incr Delay (d2), s/veh	3.5	2.5	2.8	0.3	4.5	4.3	207.9	0.0	0.2	1.5	0.1	0.2		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	2.0	8.6	8.4	1.3	13.6	14.1	59.3	0.4	3.7	4.8	0.8	0.9		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	34.8	25.2	25.6	17.2	24.4	24.3	240.4	12.7	12.2	38.0	33.1	33.2		LnGrp LOS	С	С	С	В	С	С	F	В	В	D	С	С		Approach Vol, veh/h		628			1122			927			174			Approach Delay, s/veh		26.2			24.0			187.3			36.6			Approach LOS		C			C			F			D			Timer - Assigned Phs		2	3	4	5	6		8						Phs Duration (G+Y+Rc), s		43.5	29.0	17.5	7.9	35.6		46.5						Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0		4.0						Max Green Setting (Gmax), s		31.0	25.0	22.0	5.0	22.0		51.0						Max Q Clear Time (g_c+I1), s		22.8	27.0	11.3	3.9	22.6		8.2						Green Ext Time (p_c), s		4.0	0.0	0.5	0.0	0.0		0.8								4.0	0.0	0.5	0.0	0.0		0.0						Intersection Summary			70.0											HCM 6th Ctrl Delay			78.3											HCM 6th LOS			E											Notes													User approved changes to right turn type.		•	-	•	•	>	4					-------------------------------	-------------	-------	-------	------	-------------	------------------	---	-----	--		Movement	EBL	EBT	WBT	WBR	SBL	SBR					Lane Configurations	ሻሻ	1111	4111			77					Traffic Volume (vph)	500	1900	2300	50	0	230					Future Volume (vph)	500	1900	2300	50	0	230					Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					Lane Width	10	10	10	12	12	12					Total Lost time (s)	4.0	4.0	4.0	12	12	4.0					Lane Util. Factor	0.97	0.86	0.86			0.88					Frpb, ped/bikes	1.00	1.00	1.00			1.00					Flpb, ped/bikes	1.00	1.00	1.00			1.00											0.85																																																																																																																																														
			Frt	1.00	1.00	1.00								Fit Protected	0.95	1.00	1.00			1.00					Satd. Flow (prot)	3204	5981	5947			2787					Flt Permitted	0.95	1.00	1.00			1.00					Satd. Flow (perm)	3204	5981	5947			2787					Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98					Adj. Flow (vph)	510	1939	2347	51	0	235					RTOR Reduction (vph)	0	0	2	0	0	7					Lane Group Flow (vph)	510	1939	2396	0	0	228					Confl. Peds. (#/hr)				60							Turn Type	Prot	NA	NA			Over					Protected Phases	1	Free	2			1					Permitted Phases	•		_								Actuated Green, G (s)	22.6	106.8	76.2			22.6					Effective Green, g (s)	22.6	106.8	76.2			22.6					Actuated g/C Ratio	0.21	1.00	0.71			0.21					Clearance Time (s)	4.0	1.00	4.0			4.0					` ,						3.0					Vehicle Extension (s)	3.0	5004	3.0								Lane Grp Cap (vph)	678	5981	4243			589					v/s Ratio Prot	c0.16	0.32	c0.40			0.08					v/s Ratio Perm											v/c Ratio	0.75	0.32	0.56			0.39					Uniform Delay, d1	39.5	0.0	7.3			36.2					Progression Factor	1.00	1.00	1.00			1.00					Incremental Delay, d2	4.7	0.1	0.5			0.4					Delay (s)	44.2	0.1	7.9			36.6					Level of Service	D	Α	Α			D					Approach Delay (s)		9.3	7.9		36.6						Approach LOS		Α	Α		D						Intersection Summary														0.0	1.14	CM 2000	Lovel of Comic		۸			HCM 2000 Control Delay	- 14 C .		9.9	H	UNI 2000	Level of Service	•	А			HCM 2000 Volume to Capa	acity ratio		0.61					0.0			Actuated Cycle Length (s)	.,		106.8		um of lost			8.0			Intersection Capacity Utiliza	ation		55.2%	IC	U Level c	of Service		В			Analysis Period (min)			15								0.10.011.00.00												•	-	←	•	>	4					-------------------------------	-------------	------	-------	------	-------------	------------------	---	-----	--		Movement	EBL	EBT	WBT	WBR	SBL	SBR					Lane Configurations	ሻሻ	1111	4111			77					Traffic Volume (vph)	700	2100	1470	50	0	430					Future Volume (vph)	700	2100	1470	50	0	430					Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					Lane Width	10	10	10	12	12	12					Total Lost time (s)	4.0	4.0	4.0	12	12	4.0					Lane Util. Factor	0.97	0.86	0.86			0.88					Frpb, ped/bikes	1.00	1.00	1.00			1.00					Flpb, ped/bikes	1.00	1.00	1.00			1.00					Frt	1.00	1.00	1.00			0.85							1.00	1.00			1.00					Flt Protected	0.95										Satd. Flow (prot)	3204	5981	5926			2787					Flt Permitted	0.95	1.00	1.00			1.00					Satd. Flow (perm)	3204	5981	5926			2787					Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98					Adj. Flow (vph)	714	2143	1500	51	0	439					RTOR Reduction (vph)	0	0	3	0	0	13					Lane Group Flow (vph)	714	2143	1548	0	0	426					Confl. Peds. (#/hr)	75			75							Turn Type	Prot	NA	NA			Over					Protected Phases	1	Free	2			1					Permitted Phases											Actuated Green, G (s)	27.5	93.7	58.2			27.5					Effective Green, g (s)	27.5	93.7	58.2			27.5					Actuated g/C Ratio	0.29	1.00	0.62			0.29					Clearance Time (s)	4.0	1.00	4.0			4.0					Vehicle Extension (s)	3.0		3.0			3.0							E004				817					Lane Grp Cap (vph)	940	5981	3680								v/s Ratio Prot	c0.22	0.36	c0.26			0.15					v/s Ratio Perm	0.70	0.00	0.40			0.50					v/c Ratio	0.76	0.36	0.42			0.52					Uniform Delay, d1	30.1	0.0	9.1			27.6					Progression Factor	1.00	1.00	1.00			1.00					Incremental Delay, d2	3.6	0.2	0.4			0.6					Delay (s)	33.7	0.2	9.5			28.2					Level of Service	С	Α	Α			С					Approach Delay (s)		8.5	9.5		28.2						Approach LOS		Α	Α		С						Intersection Summary											HCM 2000 Control Delay			10.6	H	CM 2000	Level of Service)	В			HCM 2000 Volume to Capa	acity ratio		0.53								Actuated Cycle Length (s)			93.7	Sı	um of lost	time (s)		8.0			Intersection Capacity Utiliza	ation		48.9%			of Service		А			Analysis Period (min)			15								O'C' all a Co			10									•	→	•	•	←	4	4	†	/	/	Ţ	4		------------------------------	----------	---	------	------------	----------	------	------	-----------	----------	----------	-------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ķ	^	7	, J	^	7	J.	^	7	, J	ተተተ	7		Traffic Volume (veh/h)	160	420	180	220	1250	270	210	1090	130	130	610	130		Future Volume (veh/h)	160	420	180	220	1250	270	210	1090	130	130	610	130		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.98	0.99		0.98	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	163	429	108	224	1276	173	214	1112	41	133	622	48		Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	181	1114	628	455	1287	565	384	1145	506	186	1475	541		Arrive On Green	0.06	0.31	0.31	0.10	0.36	0.36	0.09	0.32	0.32	0.06	0.29	0.29		Sat Flow, veh/h	1781	3554	1555	1781	3554	1559	1781	3554	1570	1781	5106	1569		Grp Volume(v), veh/h	163	429	108	224	1276	173	214	1112	41	133	622	48		Grp Sat Flow(s),veh/h/ln	1781	1777	1555	1781	1777	1559	1781	1777	1570	1781	1702	1569		Q Serve(g_s), s	5.0	8.5	4.0	7.2	32.2	7.2	7.5	27.8	1.6	4.8	8.9	1.9		Cycle Q Clear(g_c), s	5.0	8.5	4.0	7.2	32.2	7.2	7.5	27.8	1.6	4.8	8.9	1.9		Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Lane Grp Cap(c), veh/h	181	1114	628	455	1287	565	384	1145	506	186	1475	541		V/C Ratio(X)	0.90	0.39	0.17	0.49	0.99	0.31	0.56	0.97	0.08	0.72	0.42	0.09		Avail Cap(c_a), veh/h	181	1114	628	507	1287	565	384	1145	506	186	1475	541		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	26.3	24.1	17.3	17.0	28.6	20.6	19.9	30.1	21.2	24.6	25.9	19.9		Incr Delay (d2), s/veh	40.4	1.0	0.6	0.8	23.1	1.4	1.8	20.5	0.3	12.4	0.9	0.3		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	7.6	6.4	2.6	5.2	23.6	4.8	5.7	20.7	1.1	4.6	6.4	1.2		Unsig. Movement Delay, s/veh		• • • • • • • • • • • • • • • • • • • •		V. <u></u>			•				• • •			LnGrp Delay(d),s/veh	66.7	25.1	17.9	17.8	51.6	22.0	21.6	50.6	21.5	37.1	26.8	20.3		LnGrp LOS	E	C	В	В	D	C	C	D	C	D	C	C		Approach Vol, veh/h	<u> </u>	700			1673			1367			803			Approach Delay, s/veh		33.7			44.0			45.2			28.1			Approach LOS		C			D			70.2 D			C C			1.1											U			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	12.0	31.0	9.0	38.0	9.0	34.0	13.4	33.6						Change Period (Y+Rc), s	4.0	* 5	4.0	* 5.4	4.0	* 5	4.0	* 5.4						Max Green Setting (Gmax), s	8.0	* 26	5.0	* 33	5.0	* 29	12.0	* 26						Max Q Clear Time (g_c+I1), s	9.5	10.9	7.0	34.2	6.8	29.8	9.2	10.5						Green Ext Time (p_c), s	0.0	3.8	0.0	0.0	0.0	0.0	0.2	2.6						Intersection Summary														HCM 6th Ctrl Delay			40.0											HCM 6th LOS			D											Notes													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		•	→	•	•	←	•	•	†	~	>	ļ	4		------------------------------	------	----------	------	-------	----------	------	------	----------	------	-------------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	^	7	ሻ	^	7	ሻ	^	7	ሻ	ተተተ	7		Traffic Volume (veh/h)	180	690	230	170	1010	210	260	940	390	190	680	120		Future Volume (veh/h)	180	690	230	170	1010	210	260	940	390	190
680	120		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	188	719	195	177	1052	103	271	979	272	198	708	74		Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	221	1129	657	307	1169	541	387	1185	541	234	1532	576		Arrive On Green	0.07	0.32	0.32	0.08	0.33	0.34	0.10	0.33	0.34	0.07	0.30	0.30		Sat Flow, veh/h	1781	3554	1570	1781	3554	1571	1781	3554	1571	1781	5106	1569		Grp Volume(v), veh/h	188	719	195	177	1052	103	271	979	272	198	708	74		Grp Sat Flow(s),veh/h/ln	1781	1777	1570	1781	1777	1571	1781	1777	1571	1781	1702	1569		Q Serve(g_s), s	6.0	15.6	7.4	6.0	25.4	4.1	9.0	22.8	12.4	6.0	10.1	2.8		Cycle Q Clear(g_c), s	6.0	15.6	7.4	6.0	25.4	4.1	9.0	22.8	12.4	6.0	10.1	2.8		Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Lane Grp Cap(c), veh/h	221	1129	657	307	1169	541	387	1185	541	234	1532	576		V/C Ratio(X)	0.85	0.64	0.30	0.58	0.90	0.19	0.70	0.83	0.50	0.85	0.46	0.13		Avail Cap(c_a), veh/h	221	1129	657	307	1169	541	387	1185	541	234	1532	576		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	24.8	26.3	17.4	20.2	28.8	20.7	20.1	27.6	23.4	26.4	25.6	18.9		Incr Delay (d2), s/veh	25.4	2.7	1.2	2.7	11.1	0.8	5.5	6.7	3.3	23.7	1.0	0.5		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	7.4	10.8	4.9	4.6	17.7	2.8	7.7	15.5	8.4	7.8	7.3	1.9		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	50.2	29.0	18.6	22.8	39.9	21.5	25.6	34.3	26.7	50.1	26.6	19.4		LnGrp LOS	D	С	В	С	D	С	С	С	С	D	С	В		Approach Vol, veh/h	_	1102			1332			1522		_	980			Approach Delay, s/veh		30.8			36.2			31.4			30.8			Approach LOS		C			D			C			C						•			•	_							Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	13.0	32.0	10.0	35.0	10.0	35.0	11.0	34.0						Change Period (Y+Rc), s	4.0	* 5	4.0	* 5.4	4.0	* 5	4.0	* 5.4						Max Green Setting (Gmax), s	9.0	* 27	6.0	* 30	6.0	* 30	7.0	* 29						Max Q Clear Time (g_c+l1), s	11.0	12.1	8.0	27.4	8.0	24.8	8.0	17.6						Green Ext Time (p_c), s	0.0	4.4	0.0	1.5	0.0	3.2	0.0	4.0						Intersection Summary														HCM 6th Ctrl Delay			32.4											HCM 6th LOS			С											Notos													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		۶	→	•	•	•	•	1	†	<i>></i>	/	↓	✓		--------------------------------------	--------------	--------------	--------------	--------------	-----------	--------------	---------	--------------	--------------	--------------	--------------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	↑	7	ሻ		7		ተተተ	7	7	^ ^			Traffic Volume (vph)	150	210	450	100	0	140	0	1160	100	280	700	0		Future Volume (vph)	150	210	450	100	0	140	0	1160	100	280	700	0		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	5.5	5.5	5.5	5.6		4.0		5.3	5.3	4.0	5.3			Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		0.91	1.00	1.00	0.91			Frpb, ped/bikes	1.00	1.00	1.00	1.00		1.00		1.00	0.91	1.00	1.00			Flpb, ped/bikes	1.00	1.00	1.00	0.99		1.00		1.00	1.00	1.00	1.00			Frt	1.00	1.00	0.85	1.00		0.85		1.00	0.85	1.00	1.00			Flt Protected	0.95 1770	1.00 1863	1.00 1583	0.95 1750		1.00 1583		1.00 5085	1.00 1441	0.95 1768	1.00 5085			Satd. Flow (prot) Flt Permitted	0.95	1.00	1.00	0.22		1.00		1.00	1.00	0.15	1.00			Satd. Flow (perm)	1770	1863	1583	401		1583		5085	1441	274	5085								0.07		0.07					0.07		Peak-hour factor, PHF	0.97 155	0.97 216	0.97 464	0.97 103	0.97	0.97 144	0.97	0.97 1196	0.97 103	0.97 289	0.97 722	0.97		Adj. Flow (vph) RTOR Reduction (vph)	0	0	130	0	0	75	0	0	78	209	0	0		Lane Group Flow (vph)	155	216	334	103	0	69	0	1196	25	289	722	0		Confl. Peds. (#/hr)	100	210	20	20	U	09	20	1190	30	30	122	20		Turn Type	Split	NA	Prot	Perm		nm i ov	20	NA	Perm		NA	20		Protected Phases	Spiit 4	4	4	Pelili		pm+ov 5		6	reiiii	pm+pt 5	2			Permitted Phases	4	4	4	3		3		U	6	2	2			Actuated Green, G (s)	19.3	19.3	19.3	18.4		28.4		21.9	21.9	37.2	35.9			Effective Green, g (s)	19.3	19.3	19.3	18.4		28.4		21.9	21.9	37.2	35.9			Actuated g/C Ratio	0.21	0.21	0.21	0.20		0.32		0.24	0.24	0.41	0.40			Clearance Time (s)	5.5	5.5	5.5	5.6		4.0		5.3	5.3	4.0	5.3			Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		5.0	5.0	3.0	5.4			Lane Grp Cap (vph)	379	399	339	81		569		1237	350	279	2028			v/s Ratio Prot	0.09	0.12	c0.21	01		0.01		0.24	000	c0.11	0.14			v/s Ratio Perm	0.00	0.12	00.21	c0.26		0.03		0.21	0.02	c0.31	0.11			v/c Ratio	0.41	0.54	0.98	1.27		0.12		0.97	0.07	1.04	0.36			Uniform Delay, d1	30.4	31.4	35.2	35.8		21.9		33.7	26.2	33.9	19.0			Progression Factor	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00			Incremental Delay, d2	0.7	1.5	44.3	189.4		0.1		18.8	0.4	63.5	0.5			Delay (s)	31.2	32.9	79.5	225.2		22.0		52.5	26.6	97.4	19.4			Level of Service	С	С	Е	F		С		D	С	F	В			Approach Delay (s)		58.5			106.7			50.4			41.7			Approach LOS		Е			F			D			D			Intersection Summary														HCM 2000 Control Delay			53.9	H	CM 2000	Level of S	Service		D					HCM 2000 Volume to Capac	ity ratio		1.13											Actuated Cycle Length (s)			90.0		um of los				20.4					Intersection Capacity Utilizat	ion		71.9%	IC	U Level	of Service			С					Analysis Period (min)			15											c Critical Lane Group															۶	-	\rightarrow	•	←	•	•	†	/	>	ļ	4		---------------------------------	-----------	----------	---------------	-------	-----------	------------	---------	----------	------	-------------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	†	7	¥		7		ተተተ	7	*	ተተተ			Traffic Volume (vph)	380	390	510	50	0	230	0	990	130	220	840	0		Future Volume (vph)	380	390	510	50	0	230	0	990	130	220	840	0		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	4.0	5.5	4.0	4.0		4.0		5.3	4.0	4.0	5.3			Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		0.91	1.00	1.00	0.91			Frpb, ped/bikes	1.00	1.00	1.00	1.00		1.00		1.00	0.83	1.00	1.00			Flpb, ped/bikes	1.00	1.00	1.00	0.96		1.00		1.00	1.00	1.00	1.00			Frt	1.00	1.00	0.85	1.00		0.85		1.00	0.85	1.00	1.00			Flt Protected	0.95	1.00	1.00	0.95		1.00		1.00	1.00	0.95	1.00			Satd. Flow (prot)	1770	1863	1583	1705		1583		5085	1313	1766	5085			Flt Permitted	0.95	1.00	1.00	0.43		1.00		1.00	1.00	0.14	1.00			Satd. Flow (perm)	1770	1863	1583	764		1583		5085	1313	252	5085			Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96		Adj. Flow (vph)	396	406	531	52	0	240	0	1031	135	229	875	0		RTOR Reduction (vph)	0	0	99	0	0	76	0	0	95	0	0	0		Lane Group Flow (vph)	396	406	432	52	0	164	0	1031	40	229	875	0		Confl. Peds. (#/hr)			45	45			35		65	65		35		Turn Type	Split	NA	Prot	Perm		pm+ov		NA	Perm	pm+pt	NA			Protected Phases	4	4	4			5		6		5	2			Permitted Phases				3		3			6	2				Actuated Green, G (s)	26.5	26.5	26.5	7.8		17.6		25.5	25.5	39.3	39.3			Effective																																																																																																																																										
Green, g (s)	28.0	26.5	28.0	9.4		17.6		25.5	26.8	39.3	39.3			Actuated g/C Ratio	0.31	0.29	0.31	0.10		0.20		0.28	0.30	0.44	0.44			Clearance Time (s)	5.5	5.5	5.5	5.6		4.0		5.3	5.3	4.0	5.3			Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		5.0	5.0	3.0	5.4			Lane Grp Cap (vph)	550	548	492	79		309		1440	390	274	2220			v/s Ratio Prot	0.22	0.22	c0.27			0.06		0.20		c0.09	0.17			v/s Ratio Perm				c0.07		0.05			0.03	c0.27				v/c Ratio	0.72	0.74	0.88	0.66		0.53		0.72	0.10	0.84	0.39			Uniform Delay, d1	27.5	28.7	29.4	38.8		32.5		29.0	22.9	18.8	17.2			Progression Factor	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00			Incremental Delay, d2	4.5	5.4	16.1	18.1		1.6		3.1	0.5	19.3	0.5			Delay (s)	32.0	34.0	45.5	56.8		34.1		32.1	23.4	38.1	17.8			Level of Service	С	С	D	Е		С		С	С	D	В			Approach Delay (s)		38.0			38.2			31.1			22.0			Approach LOS		D			D			С			С			Intersection Summary														HCM 2000 Control Delay			31.4	H	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capac	ity ratio		0.90											Actuated Cycle Length (s)			90.0		um of los				20.4					Intersection Capacity Utilizati	ion		73.1%	IC	U Level	of Service			D					Analysis Period (min)			15											c Critical Lane Group															϶	-	•	•	←	•	•	†	/	>	ļ	4		--	-------	-------	-------	------	-----------	-------------	---------	----------	-----------	-------------	------	-------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	77	41111		ሻ	1111	7	ሻ	^	7	1,4	414	7		Traffic Volume (vph)	670	1150	20	30	1780	770	30	40	60	310	30	530		Future Volume (vph)	670	1150	20	30	1780	770	30	40	60	310	30	530		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	10	10	12	10	10	12	12	12	12	12	12	12		Total Lost time (s)	4.0	5.4		4.0	5.4	6.2	6.2	6.2	6.2	6.2	6.2	4.0		Lane Util. Factor	0.97	0.81		1.00	0.86	1.00	1.00	0.95	1.00	0.86	0.86	1.00		Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	0.99		Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Frt	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.96	1.00		Satd. Flow (prot)	3204	7021		1652	5981	1537	1770	3539	1583	3044	3085	1572		FIt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.96	1.00		Satd. Flow (perm)	3204	7021		1652	5981	1537	1770	3539	1583	3044	3085	1572		Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Adj. Flow (vph)	691	1186	21	31	1835	794	31	41	62	320	31	546		RTOR Reduction (vph)	0	2	0	0	0	56	0	0	59	0	0	66		Lane Group Flow (vph)	691	1205	0	31	1835	738	31	41	3	214	137	480		Confl. Peds. (#/hr)	25		5	5		25	5					5		Turn Type	Prot	NA		Prot	NA	pm+ov	Split	NA	Perm	Split	NA	pm+ov		Protected Phases	5	2		1	6	3	4	4		3	3	5		Permitted Phases						6			4			3		Actuated Green, G (s)	27.6	64.9		3.6	40.9	64.7	5.9	5.9	5.9	23.8	23.8	51.4		Effective Green, g (s)	27.6	64.9		3.6	40.9	64.7	5.9	5.9	5.9	23.8	23.8	51.4		Actuated g/C Ratio	0.23	0.54		0.03	0.34	0.54	0.05	0.05	0.05	0.20	0.20	0.43		Clearance Time (s)	4.0	5.4		4.0	5.4	6.2	6.2	6.2	6.2	6.2	6.2	4.0		Vehicle Extension (s)	3.0	5.5		3.0	5.1	5.0	3.0	3.0	3.0	5.0	5.0	3.0		Lane Grp Cap (vph)	736	3797		49	2038	828	87	174	77	603	611	725		v/s Ratio Prot	c0.22	0.17		0.02	c0.31	c0.18	c0.02	0.01		0.07	0.04	0.15		v/s Ratio Perm						0.30			0.00			0.15		v/c Ratio	0.94	0.32		0.63	0.90	0.89	0.36	0.24	0.04	0.35	0.22	0.66		Uniform Delay, d1	45.4	15.3		57.5	37.6	24.5	55.2	54.9	54.4	41.5	40.4	27.4		Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Incremental Delay, d2	19.5	0.2		23.7	6.9	12.6	2.5	0.7	0.2	0.8	0.4	2.3		Delay (s)	64.9	15.5		81.2	44.5	37.1	57.7	55.6	54.6	42.2	40.7	29.7		Level of Service	Е	В		F	D	D	Е	Е	D	D	D	С		Approach Delay (s)		33.5			42.7			55.6			34.4			Approach LOS		С			D			Е			С			Intersection Summary														HCM 2000 Control Delay			38.6	Н	CM 2000	Level of	Service		D					HCM 2000 Volume to Capacity ratio 0.88					2111 2000		2311100							· · · · · · · · · · · · · · · · · · ·			120.0	S	um of los	st time (s)			21.8								87.0%			of Service			21.0 E					Analysis Period (min)			15	10		J. 551 1100									٠	→	•	•	•	•	4	†	/	>	ļ	4		---------------------------------------	--------------	----------	-------	------	---------	-------------	---------	----------	-----------	-------------	------	-------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	44	41111		, J	1111	7	, J	^	7	1,1	4₽	7		Traffic Volume (vph)	600	1470	30	70	1310	500	20	40	40	620	40	600		Future Volume (vph)	600	1470	30	70	1310	500	20	40	40	620	40	600		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	10	10	12	10	10	12	12	12	12	12	12	12		Total Lost time (s)	4.0	5.4		4.0	5.4	4.0	4.0	6.2	4.0	4.0	6.2	4.0		Lane Util. Factor	0.97	0.81		1.00	0.86	1.00	1.00	0.95	1.00	0.86	0.86	1.00		Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.95	1.00	1.00	1.00	1.00	1.00	0.99		Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Frt	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		Fit Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.96	1.00		Satd. Flow (prot)	3204	7017		1652	5981	1501	1770	3539	1583	3044	3075	1570		Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.96	1.00		Satd. Flow (perm)	3204	7017	0.00	1652	5981	1501	1770	3539	1583	3044	3075	1570		Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Adj. Flow (vph)	612	1500	31	71	1337	510	20	41	41	633	41	612		RTOR Reduction (vph)	0	2	0	0	4227	58	0	0	38	0	0	64		Lane Group Flow (vph)	612	1529	0	71	1337	452	20	41	3	424	250	548		Confl. Peds. (#/hr)	50	NIA.	5	5		50	15	N. A.		0 111		15		Turn Type	Prot	NA		Prot	NA	pm+ov	Split	NA	Perm	Split	NA	pm+ov		Protected Phases	5	2		1	6	3	4	4	4	3	3	5		Permitted Phases	22.5	64.4		8.3	39.2	6 59.0	5.7	5.7	4 5.7	19.8	19.8	53.3		Actuated Green, G (s)	33.5 33.5	64.4		8.3	39.2	63.4	7.9	5.7	7.9	22.0	19.8	53.3		Effective Green, g (s)	0.28	0.54		0.07	0.33	0.53	0.07	0.05	0.07	0.18	0.17	0.44		Actuated g/C Ratio Clearance Time (s)	4.0	5.4		4.0	5.4	6.2	6.2	6.2	6.2	6.2	6.2	4.0		Vehicle Extension (s)	3.0	5.5		3.0	5.4	5.0	3.0	3.0	3.0	5.0	5.0	3.0			894	3765		114	1953	793	116	168	104	558	507	749		Lane Grp Cap (vph) v/s Ratio Prot	0.19	0.22		0.04	c0.22	0.10	0.01	c0.01	104	c0.14	0.08	c0.20		v/s Ratio Prot v/s Ratio Perm	0.19	0.22		0.04	CU.22	0.10	0.01	CU.U I	0.00	CU. 14	0.06	0.14		v/c Ratio	0.68	0.41		0.62	0.68	0.20	0.17	0.24	0.00	0.76	0.49	0.14		Uniform Delay, d1	38.5	16.5		54.3	35.0	19.1	53.0	55.1	52.4	46.5	45.5	27.5		Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Incremental Delay, d2	2.2	0.3		10.1	2.0	1.5	0.7	0.8	0.1	7.0	1.6	3.7		Delay (s)	40.7	16.8		64.5	37.0	20.6	53.7	55.8	52.6	53.5	47.1	31.2		Level of Service	D	В		E	D	C	D	E	02.0 D	D	D	C		Approach Delay (s)		23.6		_	33.7	U		54.1			41.6	U		Approach LOS		C			C			D			D																	Intersection Summary					0110000									HCM 2000 Control Delay			32.0	Н	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capa	city ratio		0.72						04.0					Actuated Cycle Length (s)			120.0			st time (s)			21.8					Intersection Capacity Utiliza	ition		77.5%	IC	U Level	of																																																																																																																									
Service			D					Analysis Period (min)			15										c Critical Lane Group		۶	→	•	•	•	•	•	†	/	/	ţ	4		-------------------------------------	--------------	--------------	--------------	--------------	--------------	-------------	-------------	--------------	-------------	--------------	--------------	-------------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	1111	7	7	4†††		ሻሻ	∱ ∱		ሻሻ	^	7		Traffic Volume (veh/h)	100	1280	410	210	2120	380	700	990	120	170	490	250		Future Volume (veh/h)	100	1280	410	210	2120	380	700	990	120	170	490	250		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070		Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	115	1471	471	241	2437	437	805	1138	129	195	563	171		Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2 570		Cap, veh/h	360	2818	694	199	1941	342	783	992	112	259	577	578		Arrive On Green	0.20 1781	0.44 6434	0.44 1585	0.11 1781	0.35 5545	0.35 976	0.23	0.31 3218	0.31 364	0.07 3456	0.16 3554	0.16		Sat Flow, veh/h							3456					1585		Grp Volume(v), veh/h	115	1471	471	241	2115	759	805	628	639	195	563	171		Grp Sat Flow(s),veh/h/ln	1781	1609	1585	1781	1609	1695	1728	1777	1805	1728	1777	1585		Q Serve(g_s), s	6.6	20.0	18.8	13.4	42.0	42.0	27.2	37.0	37.0	6.6	18.9	0.0		Cycle Q Clear(g_c), s	6.6	20.0	18.8	13.4	42.0	42.0	27.2	37.0	37.0	6.6	18.9	0.0		Prop In Lane	1.00 360	2818	1.00 694	1.00 199	1689	0.58 593	1.00 783	548	0.20 556	1.00 259	577	1.00 578		Lane Grp Cap(c), veh/h V/C Ratio(X)	0.32	0.52	0.68	1.21	1.25	1.28	1.03	1.15	1.15	0.75	0.97	0.30		Avail Cap(c_a), veh/h	360	2818	694	199	1689	593	783	548	556	259	577	578		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	40.8	24.6	11.7	53.3	39.0	39.0	46.4	41.5	41.5	54.4	50.0	27.2		Incr Delay (d2), s/veh	0.5	0.7	5.3	132.5	118.6	138.4	39.6	85.3	86.4	10.6	31.0	0.3		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	5.3	12.1	11.4	20.7	50.8	58.2	22.5	40.7	41.5	5.8	16.1	6.2		Unsig. Movement Delay, s/veh		12.1		20.7	00.0	00.2	LL.O	10.7	11.0	0.0	10.1	0.2		LnGrp Delay(d),s/veh	41.3	25.3	17.0	185.8	157.6	177.4	86.0	126.8	127.9	65.0	81.0	27.4		LnGrp LOS	D	C	В	F	F	F	F	F	F	E	F	С		Approach Vol, veh/h		2057	_		3115			2072		_	929			Approach Delay, s/veh		24.3			164.6			111.3			67.8			Approach LOS		C			F			F			E						•			•	_							Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	19.0	58.8	33.7	25.5	30.5	47.3	15.7	43.5						Change Period (Y+Rc), s	5.6	* 5.8	* 6.5	6.0	5.8	* 5.3	* 6.7	* 6.5						Max Green Setting (Gmax), s	13.4	* 37	* 27	19.5	8.2	* 42	* 9	* 37						Max Q Clear Time (g_c+l1), s	15.4	22.0	29.2	20.9	8.6	44.0	8.6	39.0						Green Ext Time (p_c), s	0.0	10.2	0.0	0.0	0.0	0.0	0.0	0.0						Intersection Summary														HCM 6th Ctrl Delay			104.8											HCM 6th LOS			F										^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		ၨ	→	•	•	←	•	•	†	/	>	ļ	1		------------------------------	------	----------	-------	-------	----------	-------	-------	-------------	-------	-------------	----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	Ť	1111	7	Ť	4111		ሻሻ	∱ î≽		ሻሻ	^	7		Traffic Volume (veh/h)	230	2290	570	240	1420	250	660	1030	160	230	850	170		Future Volume (veh/h)	230	2290	570	240	1420	250	660	1030	160	230	850	170		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	242	2411	600	253	1495	263	695	1084	157	242	895	97		Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	748	3801	936	223	1664	293	562	994	144	337	918	1072		Arrive On Green	0.42	0.59	0.59	0.13	0.30	0.29	0.16	0.32	0.30	0.10	0.26	0.26		Sat Flow, veh/h	1781	6434	1585	1781	5546	975	3456	3116	450	3456	3554	1585		Grp Volume(v), veh/h	242	2411	600	253	1301	457	695	617	624	242	895	97		Grp Sat Flow(s),veh/h/ln	1781	1609	1585	1781	1609	1695	1728	1777	1789	1728	1777	1585		Q Serve(g_s), s	10.9	29.4	31.3	15.0	31.0	31.1	19.5	38.3	38.3	8.2	30.0	0.0		Cycle Q Clear(g_c), s	10.9	29.4	31.3	15.0	31.0	31.1	19.5	38.3	38.3	8.2	30.0	0.0		Prop In Lane	1.00		1.00	1.00		0.58	1.00		0.25	1.00		1.00		Lane Grp Cap(c), veh/h	748	3801	936	223	1448	509	562	567	571	337	918	1072		V/C Ratio(X)	0.32	0.63	0.64	1.14	0.90	0.90	1.24	1.09	1.09	0.72	0.97	0.09		Avail Cap(c_a), veh/h	748	3801	936	223	1460	513	562	567	571	337	918	1072		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	23.4	16.1	17.7	52.5	40.2	40.6	50.3	40.8	41.1	52.6	44.1	6.7		Incr Delay (d2), s/veh	0.2	8.0	3.4	101.9	9.1	21.4	121.6	64.1	65.2	6.3	23.6	0.0		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	8.1	15.7	17.0	19.9	19.2	22.3	27.1	36.6	37.1	6.8	22.3	1.4		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	23.6	16.9	21.1	154.4	49.4	62.0	171.9	104.9	106.3	58.8	67.8	6.7		LnGrp LOS	С	В	С	F	D	E	F	F	F	E	E	A		Approach Vol, veh/h		3253			2011			1936			1234			Approach Delay, s/veh		18.2			65.5			129.4			61.2			Approach LOS		В			Е			F			Е			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	19.0	76.2	23.5	35.0	55.2	40.0	15.7	42.8						Change Period (Y+Rc), s	5.6	* 5.8	* 6.5	6.0	5.8	* 5.3	* 6.7	* 6.5						Max Green Setting (Gmax), s	13.4	* 38	* 17	29.0	15.9	* 35	* 9	* 36						Max Q Clear Time (g_c+I1), s	17.0	33.3	21.5	32.0	12.9	33.1	10.2	40.3						Green Ext Time (p_c), s	0.0	4.2	0.0	0.0	0.2	1.6	0.0	0.0						Intersection Summary														HCM 6th Ctrl Delay			61.3											HCM 6th LOS			E										^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		ၨ	→	•	•	←	•	•	†	/	>	ļ	4		------------------------------	------	------------	------	------	----------	-------	-------------	----------	------	-------------	----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	^ ^	7	ሻ	^	7	ሻሻ	^	77	ሻሻ	^	7		Traffic Volume (veh/h)	110	660	360	530	1250	1060	390	910	220	330	460	290		Future Volume (veh/h)	110	660	360	530	1250	1060	390	910	220	330	460	290		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870																																																																																																																																																																																																																																																																					
Adj Flow Rate, veh/h	112	673	300	541	1276	932	398	929	190	337	469	223		Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	177	1240	557	569	2274	706	374	829	1332	391	846	443		Arrive On Green	0.04	0.24	0.24	0.24	0.45	0.45	0.11	0.23	0.23	0.11	0.24	0.24		Sat Flow, veh/h	1781	5106	1585	1781	5106	1585	3456	3554	2790	3456	3554	1585		Grp Volume(v), veh/h	112	673	300	541	1276	932	398	929	190	337	469	223			1781	1702	1585	1781	1702	1585	1728	1777	1395	1728	1777	1585		Grp Sat Flow(s),veh/h/ln	5.0	13.8	18.2	26.6	22.2	53.4	13.0	28.0	4.6	11.5	13.9	14.2		Q Serve(g_s), s	5.0													Cycle Q Clear(g_c), s		13.8	18.2	26.6	22.2	53.4	13.0	28.0	4.6	11.5	13.9	14.2		Prop In Lane	1.00	4040	1.00	1.00	0074	1.00	1.00	000	1.00	1.00	0.40	1.00		Lane Grp Cap(c), veh/h	177	1240	557	569	2274	706	374	829	1332	391	846	443		V/C Ratio(X)	0.63	0.54	0.54	0.95	0.56	1.32	1.06	1.12	0.14	0.86	0.55	0.50		Avail Cap(c_a), veh/h	177	1240	557	609	2274	706	374	829	1332	403	859	449		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.90	0.90	0.90	1.00	1.00	1.00		Uniform Delay (d), s/veh	33.7	39.6	31.2	25.3	24.6	33.3	53.5	46.0	17.6	52.3	40.1	36.2		Incr Delay (d2), s/veh	7.2	1.7	3.7	24.2	1.0	154.1	61.9	68.5	0.0	16.9	0.8	0.9		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	5.1	9.9	11.8	20.8	13.8	73.1	13.7	28.6	2.6	9.8	10.1	9.3		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	40.9	41.3	34.9	49.5	25.6	187.4	115.4	114.5	17.6	69.2	40.9	37.1		LnGrp LOS	D	D	С	D	С	F	F	F	В	E	D	D		Approach Vol, veh/h		1085			2749			1517			1029			Approach Delay, s/veh		39.5			85.2			102.6			49.3			Approach LOS		D			F			F			D			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	33.3	35.1	17.0	34.6	9.0	59.4	17.6	34.0						Change Period (Y+Rc), s	4.0	6.0	4.0	* 6	4.0	6.0	4.0	* 6						Max Green Setting (Gmax), s	32.0	26.0	13.0	* 29	5.0	53.0	14.0	* 28						Max Q Clear Time (g_c+l1), s	28.6	20.2	15.0	16.2	7.0	55.4	13.5	30.0						Green Ext Time (p_c), s	0.7	2.7	0.0	3.0	0.0	0.0	0.1	0.0						Intersection Summary	J.,		3.0	0.0	0.0	0.0	U. 1	3.0									7F 0											HCM 6th LOS			75.8											HCM 6th LOS			E											Notes													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		٠	→	•	•	•	4	4	†	/	/	Ţ	4		------------------------------	-----------	-----------	-----------	------------	-----------	-----------	-----------	-----------	-----------	------------	-----------	-----------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	ተተተ	7	7	^	7	ሻሻ	^	77	ሻሻ	^	7		Traffic Volume (veh/h)	240	1770	710	220	1040	340	220	580	670	740	950	390		Future Volume (veh/h)	240	1770	710	220	1040	340	220	580	670	740	950	390		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	255	1883	698	234	1106	95	234	617	612	787	1011	376		Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	317	1729	648	223	1606	499	299	840	868	691	1243	712		Arrive On Green	0.12	0.34	0.32	0.09	0.31	0.31	0.09	0.24	0.22	0.20	0.35	0.33		Sat Flow, veh/h	1781	5106	1585	1781	5106	1585	3456	3554	2790	3456	3554	1585		Grp Volume(v), veh/h	255	1883	698	234	1106	95	234	617	612	787	1011	376		Grp Sat Flow(s), veh/h/ln	1781	1702	1585	1781	1702	1585	1728	1777	1395	1728	1777	1585		Q Serve(g_s), s	11.6	40.6	38.6	11.0	22.7	5.2	8.0	19.3	23.2	24.0	31.0	20.6		Cycle Q Clear(g_c), s	11.6	40.6	38.6	11.0	22.7	5.2	8.0	19.3	23.2	24.0	31.0	20.6		Prop In Lane	1.00	10.0	1.00	1.00	22.1	1.00	1.00	10.0	1.00	1.00	01.0	1.00		Lane Grp Cap(c), veh/h	317	1729	648	223	1606	499	299	840	868	691	1243	712		V/C Ratio(X)	0.81	1.09	1.08	1.05	0.69	0.19	0.78	0.73	0.70	1.14	0.81	0.53		Avail Cap(c_a), veh/h	378	1729	648	223	1606	499	490	859	883	691	1243	712		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.83	0.83	0.83	1.00	1.00	1.00		Uniform Delay (d), s/veh	27.8	39.7	35.5	33.3	36.0	30.0	53.7	42.3	36.5	48.0	35.4	23.9		Incr Delay (d2), s/veh	10.3	50.1	58.2	73.4	2.4	0.8	3.8	2.7	2.1	79.3	4.2	0.7		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	9.6	34.6	39.1	14.4	14.7	3.8	6.4	12.9	12.2	26.3	19.8	12.1		Unsig. Movement Delay, s/veh		34.0	33.1	14.4	14.7	3.0	0.4	12.3	12.2	20.5	13.0	12.1		LnGrp Delay(d),s/veh	38.1	89.8	93.7	106.7	38.4	30.8	57.5	45.0	38.6	127.3	39.7	24.6		LnGrp LOS	30.1 D	09.0 F	93.1 F	100.7 F	30.4 D	30.6 C	57.5 E	45.0 D	30.0 D	127.3 F	39.7 D	24.0 C			U		г	г		U			U	г				Approach Vol, veh/h		2836			1435			1463			2174			Approach Delay, s/veh		86.1			49.1			44.3			68.8			Approach LOS		F			D			D			Е			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	15.0	44.6	14.4	46.0	17.9	41.7	28.0	32.4						Change Period (Y+Rc), s	4.0	6.0	4.0	* 6	4.0	6.0	4.0	* 6						Max Green Setting (Gmax), s	11.0	38.0	17.0	* 34	18.0	31.0	24.0	* 27						Max Q Clear Time (g_c+I1), s	13.0	42.6	10.0	33.0	13.6	24.7	26.0	25.2						Green Ext Time (p_c), s	0.0	0.0	0.4	0.7	0.3	3.8	0.0	1.1						Intersection Summary														HCM 6th Ctrl Delay			66.9											HCM 6th LOS			E											Notes													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		•	•	†	/	>	↓				-------------------------------	------------	------	----------	------	-------------	------------------	------	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations		77	ተተኈ		767	^				Traffic Volume (vph)	0	210	1260	50	600	750				Future Volume (vph)	0	210	1260	50	600	750				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)		4.9	5.3		4.9	5.3				Lane Util. Factor		0.88	0.91		0.97	0.95				Frpb, ped/bikes		1.00	1.00		1.00	1.00				Flpb, ped/bikes		1.00	1.00		1.00	1.00				Frt		0.85	0.99		1.00	1.00				Flt Protected		1.00	1.00		0.95	1.00				Satd. Flow (prot)		2787	5053		3433	3539				Flt Permitted		1.00	1.00		0.95	1.00				Satd. Flow (perm)		2787	5053		3433	3539				Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00				Adj. Flow (vph)	0	210	1260	50	600	750				RTOR Reduction (vph)	0	80	7	0	000	0				Lane Group Flow (vph)	0	130	1303	0	600	750				Confl. Peds. (#/hr)	U	130	1303	10	000	130						Dorm	NΙΛ	10	Drot	NA				Turn Type Protected Phases		Perm	NA 2		Prot 8	INA						0	Z		0	28				Permitted Phases		8	20.0		0.0					Actuated Green, G (s)		8.8	26.0		8.8	45.0				Effective Green, g (s)		8.8	26.0		8.8	40.1				Actuated g/C Ratio		0.20	0.58		0.20	0.89				Clearance Time (s)		4.9	5.3		4.9					Vehicle Extension (s)		3.0	3.8		3.0					Lane Grp Cap (vph)		545	2919		671	3153				v/s Ratio Prot			c0.26		c0.17					v/s Ratio Perm		0.05				0.21				v/c Ratio		0.24	0.45		0.89	0.24				Uniform Delay, d1		15.3	5.4		17.6	0.3				Progression Factor		1.00	1.00		1.00	1.00				Incremental Delay, d2		0.2	0.5		14.4	0.0																																																																																																																																																									
Delay (s)		15.5	5.9		32.0	0.4				Level of Service		В	Α		С	Α				Approach Delay (s)	15.5		5.9			14.4				Approach LOS	В		Α			В				Intersection Summary										HCM 2000 Control Delay			10.6	H	CM 2000	Level of Service	В			HCM 2000 Volume to Capa	city ratio		0.56							Actuated Cycle Length (s)	.,		45.0	Sı	um of lost	t time (s)	10.2			Intersection Capacity Utiliza	ation		51.1%			of Service	Α			Analysis Period (min)			15							c Critical Lane Group			, ,							o ontious Earlo oroup											•	•	†	/	/	↓				-----------------------------------	-----------	--------------	-------------	----------	--------------	------------------	------------	--------		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations		77.77	ተተኈ		ሻሻ	^				Traffic Volume (vph)	0	620	830	100	350	1530				Future Volume (vph)	0	620	830	100	350	1530				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)		4.0	4.0		4.0	4.0				Lane Util. Factor		0.88	0.91		0.97	0.95				Frpb, ped/bikes		1.00	1.00		1.00	1.00				Flpb, ped/bikes		1.00	1.00		1.00	1.00				Frt		0.85	0.98		1.00	1.00				Flt Protected		1.00	1.00		0.95	1.00				Satd. Flow (prot)		2787	4992		3433	3539				Flt Permitted		1.00	1.00		0.95	1.00				Satd. Flow (perm)		2787	4992		3433	3539				Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92				Adj. Flow (vph)	0	674	902	109	380	1663				RTOR Reduction (vph)	0	198	33	0	0	0				Lane Group Flow (vph)	0	476	978	0	380	1663				Confl. Peds. (#/hr)				15						Turn Type		Perm	NA		Prot	NA				Protected Phases			2		8					Permitted Phases		8				28				Actuated Green, G (s)		8.8	26.0		8.8	45.0				Effective Green, g (s)		9.7	27.3		9.7	41.4				Actuated g/C Ratio		0.22	0.61		0.22	0.92				Clearance Time (s)		4.9	5.3		4.9					Vehicle Extension (s)		3.0	3.8		3.0	0055				Lane Grp Cap (vph)		600	3028		740	3255				v/s Ratio Prot		-0.47	0.20		0.11	-0.47				v/s Ratio Perm		c0.17	0.22		0.51	c0.47				v/c Ratio		0.79 16.7	0.32		0.51	0.51				Uniform Delay, d1		1.00	4.3 1.00		15.6 1.00	0.3 1.00				Progression Factor		7.1	0.3		0.6	0.1				Incremental Delay, d2			4.6							Delay (s) Level of Service		23.8 C	4.0 A		16.2 B	0.4 A				Approach Delay (s)	23.8	U	4.6		Ь	3.3				Approach LOS	23.0 C		4.0 A			3.3 A				Intersection Summary										HCM 2000 Control Delay			7.4	H	CM 2000	Level of Service	e <i>P</i>	\ \		HCM 2000 Volume to Capacit	tv ratio		0.61				·			Actuated Cycle Length (s)	.,		45.0	Sı	um of lost	time (s)	8.0)		Intersection Capacity Utilization	on		50.0%			of Service	Α			Analysis Period (min)			15							c Critical Lane Group											•	→	•	•	←	•	•	†	/	>	ţ	1		------------------------------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	------	-------------	-----------	-----------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	1,1	^	7	ň	^	7	ň	ተተተ	7	ň	ተተተ	7		Traffic Volume (veh/h)	220	570	250	180	800	400	110	1890	70	200	1480	170		Future Volume (veh/h)	220	570	250	180	800	400	110	1890	70	200	1480	170		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	227	588	106	186	825	289	113	1948	33	206	1526	65		Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	259	750	334	295	884	394	239	2013	809	216	2073	643		Arrive On Green	0.08	0.21	0.21	0.12	0.25	0.25	0.07	0.39	0.39	0.09	0.41	0.41		Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	5106	1585	1781	5106	1585		Grp Volume(v), veh/h	227	588	106	186	825	289	113	1948	33	206	1526	65		Grp Sat Flow(s), veh/h/ln	1728	1777	1585	1781	1777	1585	1781	1702	1585	1781	1702	1585		Q Serve(g_s), s	7.8	18.8	5.4	5.7	27.3	20.1	4.3	44.8	0.4	9.5	30.4	3.0		Cycle Q Clear(g_c), s	7.8	18.8	5.4	5.7	27.3	20.1	4.3	44.8	0.4	9.5	30.4	3.0		Prop In Lane	1.00	10.0	1.00	1.00	27.0	1.00	1.00	11.0	1.00	1.00	00.1	1.00		Lane Grp Cap(c), veh/h	259	750	334	295	884	394	239	2013	809	216	2073	643		V/C Ratio(X)	0.88	0.78	0.32	0.63	0.93	0.73	0.47	0.97	0.04	0.96	0.74	0.10		Avail Cap(c_a), veh/h	259	882	394	295	888	396	244	2013	809	216	2073	643		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.68	0.68	0.68	1.00	1.00	1.00		Uniform Delay (d), s/veh	54.9	44.8	25.4	47.7	44.1	41.4	23.6	35.6	5.4	33.6	30.2	22.1		Incr Delay (d2), s/veh	26.7	5.7	1.3	4.2	16.8	8.3	1.0	10.6	0.1	48.5	2.4	0.3		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	7.7	13.5	4.8	9.2	19.8	13.4	3.3	25.9	0.4	11.1	18.4	2.1		Unsig. Movement Delay, s/veh		10.0	4.0	J.Z	13.0	10.4	0.0	20.0	0.4	11.1	10.4	۷.۱		LnGrp Delay(d),s/veh	81.6	50.5	26.7	51.9	60.9	49.7	24.6	46.2	5.5	82.1	32.6	22.4		LnGrp LOS	61.6 F	50.5 D	20.7 C	51.9 D	00.9 E	43.7 D	24.0 C	40.2 D	J.5	02.1 F	32.0 C	22.4 C			<u> </u>			<u> </u>		<u> </u>				ı				Approach Vol, veh/h		921			1300			2094			1797			Approach Delay, s/veh		55.4			57.1			44.4			37.9			Approach LOS		Е			Е			D			D			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	15.1	55.1	15.6	36.3	16.5	53.7	20.3	31.5						Change Period (Y+Rc), s	* 6.3	6.3	* 6.6	* 6.4	* 6.3	6.3	6.4	6.2						Max Green Setting (Gmax), s	* 9.1	46.5	* 9	* 30	* 10	45.4	9.4	29.8						Max Q Clear Time (g_c+I1), s	6.3	32.4	9.8	29.3	11.5	46.8	7.7	20.8						Green Ext Time (p_c), s	0.1	8.9	0.0	0.6	0.0	0.0	0.1	4.5						Intersection Summary														HCM 6th Ctrl Delay			46.8											HCM 6th LOS			D											Notes													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		•	→	•	•	←	•	•	†	/	>	ļ	4		------------------------------	-------	-----------	-------	-------------	-----------	------	----------	------------	------	-------------	-----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	1,1	^	7	ሻ	^	7	ሻ	ተተተ	7	ሻ	ተተተ	7		Traffic Volume (veh/h)	200	890	160	110	770	200	220	1570	110	370	1860	420		Future Volume (veh/h)	200	890	160	110	770	200	220	1570	110	370	1860	420		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	206	918	38	113	794	47	227	1619	40	381	1918	266		Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	259	894	399	191	876	391	225	1545	596	349	1902	591		Arrive On Green	0.08	0.25	0.25	0.07	0.25	0.25	0.09	0.30	0.30	0.16	0.37	0.37		Sat Flow, veh/h	3456	3554	1585	1781	3554	1585	1781	5106	1585	1781	5106	1585		Grp Volume(v), veh/h	206	918	38	113	794	47	227	1619	40	381	1918	266		Grp Sat Flow(s),veh/h/ln	1728	1777	1585	1781	1777	1585	1781	1702	1585	1781	1702	1585		Q Serve(g_s), s	7.0	30.2	1.6	3.2	26.0	2.8	11.1	36.3	0.7	19.5	44.7	15.2		Cycle Q Clear(g_c), s	7.0	30.2	1.6	3.2	26.0	2.8	11.1	36.3	0.7	19.5	44.7	15.2		Prop In Lane																																																																																																																																																																																	
1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Lane Grp Cap(c), veh/h	259	894	399	191	876	391	225	1545	596	349	1902	591		V/C Ratio(X)	0.79	1.03	0.10	0.59	0.91	0.12	1.01	1.05	0.07	1.09	1.01	0.45		Avail Cap(c_a), veh/h	259	894	399	194	888	396	225	1545	596	349	1902	591		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.72	0.72	0.72	1.00	1.00	1.00		Uniform Delay (d), s/veh	54.6	44.9	18.7	52.2	43.9	35.1	33.6	41.8	8.5	37.9	37.6	28.4		Incr Delay (d2), s/veh	15.6	37.0	0.3	4.7	13.3	0.3	53.5	33.4	0.2	74.5	22.7	2.5		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	6.4	24.8	1.6	6.2	18.6	2.0	12.1	26.8	0.6	25.6	30.1	10.0		Unsig. Movement Delay, s/veh				U. _					0.0					LnGrp Delay(d),s/veh	70.2	81.9	19.0	56.8	57.2	35.4	87.1	75.3	8.7	112.4	60.3	30.9		LnGrp LOS	E	F	В	E	E	D	F	F	A	F	F	C		Approach Vol, veh/h		1162			954		<u> </u>	1886			2565			Approach Delay, s/veh		77.8			56.1			75.3			65.0			Approach LOS		77.0 E			50.1 E			7 5.5 E			00.0 E																	Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	17.4	51.0	15.6	36.0	25.8	42.6	15.2	36.4						Change Period (Y+Rc), s	* 6.3	6.3	* 6.6	* 6.4	* 6.3	6.3	6.4	6.2						Max Green Setting (Gmax), s	* 11	44.5	* 9	* 30	* 20	36.1	9.0	30.2						Max Q Clear Time (g_c+I1), s	13.1	46.7	9.0	28.0	21.5	38.3	5.2	32.2						Green Ext Time (p_c), s	0.0	0.0	0.0	1.4	0.0	0.0	0.1	0.0						Intersection Summary														HCM 6th Ctrl Delay			68.9											HCM 6th LOS			Е											Notos													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		•	→	•	•	←	•	4	†	~	/	ţ	4		------------------------------	------------	------------	------------	-------------	------------	------------	-----------	-------------	------------	--------------	-------------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	^	7	14	∱ ∱		ሻ	ተተተ	7	ሻ	^	7		Traffic Volume (veh/h)	170	220	100	320	290	50	310	1890	140	40	1790	80		Future Volume (veh/h)	170	220	100	320	290	50	310	1890	140	40	1790	80		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	0.98		0.96	1.00		0.96	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	173	224	48	327	296	33	316	1929	108	41	1827	43		Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	333	824	512	230	745	82	286	2492	852	172	2163	750		Arrive On Green	0.07	0.23	0.23	0.07	0.23	0.21	0.07	0.33	0.32	0.04	0.42	0.41		Sat Flow, veh/h	1781	3554	1524	3456	3211	354	1781	5106	1565	1781	5106	1562		Grp Volume(v), veh/h	173	224	48	327	162	167	316	1929	108	41	1827	43		Grp Sat Flow(s),veh/h/ln	1781	1777	1524	1728	1777	1788	1781	1702	1565	1781	1702	1562		Q Serve(g_s), s	6.0	4.7	2.0	6.0	7.0	7.1	9.0	30.6	3.9	1.2	28.9	1.3		Cycle Q Clear(g_c), s	6.0	4.7	2.0	6.0	7.0	7.1	9.0	30.6	3.9	1.2	28.9	1.3		Prop In Lane	1.00	20.4	1.00	1.00	440	0.20	1.00	0.400	1.00	1.00	0.4.00	1.00		Lane Grp Cap(c), veh/h	333	824	512	230	412	415	286	2492	852	172	2163	750		V/C Ratio(X)	0.52	0.27	0.09	1.42	0.39	0.40	1.11	0.77	0.13	0.24	0.84	0.06		Avail Cap(c_a), veh/h	333	1106	632	230	553	556	286	2492	852	207	2163	750		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	0.67	0.67	0.67	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.26	0.26	0.26	0.61	0.61	0.61		Uniform Delay (d), s/veh	27.4	28.3	20.7	42.0	29.2	29.5	24.8	25.8	13.3	18.3	23.3	12.6		Incr Delay (d2), s/veh	1.4	0.2	0.1	212.2	0.6	0.6	60.8	0.6	0.1	0.4	2.7	0.1		Initial Q Delay(d3),s/veh	0.0 5.3	0.0 3.5	0.0 1.2	0.0 15.7	0.0 5.2	0.0 5.4	0.0	0.0 15.8	0.0 2.2	0.0	0.0 15.5	0.0		%ile BackOfQ(95%),veh/ln		ა.ე	1.2	15.7	5.2	5.4	11.4	13.0	2.2	0.0	15.5	0.0		Unsig. Movement Delay, s/veh	28.8	28.5	20.8	254.2	29.8	30.1	85.5	26.5	13.4	18.7	25.9	12.6		LnGrp Delay(d),s/veh	20.0 C	20.5 C	20.6 C	254.Z F	29.0 C	30.1 C	00.0 F	20.5 C	13.4 B	10. <i>1</i>	25.9 C			LnGrp LOS							Г		В	D		В		Approach Vol, veh/h		445			656			2353			1911			Approach LOS		27.8 C			141.8 F			33.8			25.5 C			Approach LOS		C			Г			С			C			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	10.0	24.9	13.0	42.1	10.0	24.9	7.2	47.9						Change Period (Y+Rc), s	4.0	* 6	* 6	* 5	4.0	* 6	4.0	* 5						Max Green Setting (Gmax), s	6.0	* 26	* 7	* 30	6.0	* 26	5.0	* 34						Max Q Clear Time (g_c+I1), s	8.0	9.1	11.0	30.9	8.0	6.7	3.2	32.6						Green Ext Time (p_c), s	0.0	1.6	0.0	0.0	0.0	1.3	0.0	1.2						Intersection Summary														HCM 6th Ctrl Delay			43.5											HCM 6th LOS			D										^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		•	→	•	•	←	•	•	†	/	>	ļ	1		--	--------------	--------------	--------------	--------------	---------------	--------------	--------------	--------------	--------------	--------------	--------------	-----------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	^	7	ሻሻ	∱ ∱		7	ተተተ	7	7	^	7		Traffic Volume (veh/h)	160	490	120	310	230	60	230	1530	310	80	1950	100		Future Volume (veh/h)	160	490	120	310	230	60	230	1530	310	80	1950	100		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	0.96		0.94	1.00	4.00	0.94	1.00		0.98	1.00	4.00	0.98		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070		Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	168	516	72	326	242	32	242	1611	270	84	2053	60		Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	1050	2		Cap, veh/h	424	1007	546	269	923	120	221	2106	748	190	1958	684		Arrive On Green	0.07	0.28	0.28	0.08	0.29	0.27	0.03	0.14	0.13	0.05	0.38	0.37		Sat Flow, veh/h	1781	3554	1493	3456	3135	408	1781	5106	1555	1781	5106	1553		Grp Volume(v), veh/h	168	516	72	326	135	139	242	1611	270	84	2053	60		Grp Sat Flow(s), veh/h/ln	1781	1777	1493	1728	1777	1766	1781	1702	1555	1781	1702	1553		Q Serve(g_s), s	6.0	11.0	2.9	7.0	5.2	5.4	7.0	27.4	12.5	2.6	34.5	2.0		Cycle Q Clear(g_c), s	6.0	11.0	2.9	7.0	5.2	5.4	7.0	27.4	12.5	2.6	34.5	2.0		Prop In Lane	1.00	4007	1.00	1.00	F02	0.23	1.00	0400	1.00	1.00	4050	1.00		Lane Grp Cap(c), veh/h	424	1007	546	269	523	520	221	2106	748	190	1958	684		V/C Ratio(X)	0.40	0.51	0.13	1.21	0.26	0.27	1.10	0.76	0.36	0.44	1.05	0.09		Avail Cap(c_a), veh/h	424	1106	588	269	573	569	221	2106	748	202	1958	684		HCM Platoon Ratio	1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00	0.33	0.33 0.43	0.33	1.00	1.00	1.00		Upstream Filter(I)	1.00 22.8	1.00 27.0	19.3	1.00 41.5	24.3	1.00 24.5	0.43 25.1	34.7	0.43 22.4	0.23 20.8	0.23 27.7	0.23		Uniform Delay (d), s/veh Incr Delay (d2), s/veh	0.6	0.4	0.1	125.0	0.3	0.3	68.7	1.2	0.6	0.4	25.7	0.1		Initial Q Delay(d3),s/veh	0.0	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0		%ile BackOfQ(95%),veh/ln	4.6	7.9	1.8	12.8	3.8	4.0	10.4	16.4	7.7	1.8	21.8	1.2		Unsig.																																																																																																																																																																																																																																																																																										
Movement Delay, s/veh		1.9	1.0	12.0	3.0	4.0	10.4	10.4	1.1	1.0	21.0	1.2		LnGrp Delay(d),s/veh	23.4	27.5	19.4	166.5	24.5	24.8	93.8	35.9	23.0	21.2	53.5	14.8		LnGrp LOS	23.4 C	21.5 C	13.4 B	F	24.5 C	24.0 C	95.0 F	55.9 D	23.0 C	C C	55.5 F	14.0 B		Approach Vol, veh/h		756		<u> </u>	600		<u>'</u>	2123			2197			Approach Delay, s/veh		25.8			101.7			40.8			51.2			Approach LOS		25.0 C			101. <i>1</i>			40.0 D			51.2 D			Apploach LOS		C			Г			U			U			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	10.0	30.5	11.0	38.5	11.0	29.5	8.4	41.1						Change Period (Y+Rc), s	4.0	* 6	* 6	* 5	4.0	* 6	4.0	* 5						Max Green Setting (Gmax), s	6.0	* 27	* 5	* 31	7.0	* 26	5.0	* 33						Max Q Clear Time (g_c+l1), s	8.0	7.4	9.0	36.5	9.0	13.0	4.6	29.4						Green Ext Time (p_c), s	0.0	1.3	0.0	0.0	0.0	2.8	0.0	3.0						Intersection Summary														HCM 6th Ctrl Delay			49.3											HCM 6th LOS			D										^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		•	→	•	•	←	•	1	†	~	/	Ţ	4		---	--------------	--------------	-------------	--------------	-------------	-------------	-----------------	--------------	------	--------------	--------------	-------------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ ∱		ሻ	ተ ኈ		ሻ	ተተተ	7	ሻ	^	7		Traffic Volume (veh/h)	10	310	100	210	740	310	180	2070	30	160	1950	30		Future Volume (veh/h)	10	310	100	210	740	310	180	2070	30	160	1950	30		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.98	0.99		0.98	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070		Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	10	320	67	216	763	267	186	2134	15	165	2010	13		Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	102	749	155	329	770	269	237	2320	786	189	2320	717 0.89		Arrive On Green	0.01 1781	0.26 2919	0.25 602	0.06 1781	0.30	0.29 898	0.06 1781	0.45 5106	0.44	0.11 1781	0.91			Sat Flow, veh/h					2566				1574		5106	1574		Grp Volume(v), veh/h	10	193	194	216	528	502	186	2134	15	165	2010	13		Grp Sat Flow(s),veh/h/ln	1781	1777	1744	1781	1777	1686	1781	1702	1574	1781	1702	1574		Q Serve(g_s), s	0.4	8.1	8.4	5.0	26.7	26.7	5.0	35.3	0.4	4.8	15.2	0.1		Cycle Q Clear(g_c), s	0.4	8.1	8.4	5.0	26.7	26.7	5.0	35.3	0.4	4.8	15.2	0.1		Prop In Lane	1.00	450	0.35	1.00	F22	0.53	1.00	0200	1.00	1.00	0200	1.00		Lane Grp Cap(c), veh/h	102	456	448	329	533	506	237	2320	786	189	2320	717		V/C Ratio(X)	0.10	0.42	0.43 523	0.66	0.99	0.99	0.79	0.92	0.02	0.88	0.87	0.02		Avail Cap(c_a), veh/h	179 1.00	533	1.00	329 1.00	533 1.00	506	237	2320	786	189 2.00	2320	717 2.00		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00	0.46	2.00 0.46			Upstream Filter(I) Uniform Delay (d), s/veh	27.6	27.9	28.1	28.4	31.4	31.7	18.6	23.0	11.4	20.0	2.9	0.46 2.7		Incr Delay (d2), s/veh	0.4	0.6	0.7	4.7	36.6	37.7	15.9	7.4	0.0	18.6	2.9	0.0		Initial Q Delay(d3),s/veh	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	0.3	6.2	6.4	4.2	23.0	22.3	5.4	20.7	0.0	4.4	3.1	0.0		Unsig. Movement Delay, s/veh		0.2	0.4	4.2	25.0	22.5	J. 4	20.1	0.5	4.4	J. I	0.1		LnGrp Delay(d),s/veh	28.1	28.5	28.8	33.1	68.0	69.4	34.5	30.4	11.5	38.6	5.2	2.7		LnGrp LOS	C	20.5 C	C	C	E	65.4 E	C	C	В	D	Α	Α		Approach Vol, veh/h		397			1246	<u> </u>		2335			2188			Approach Delay, s/veh		28.6			62.5			30.6			7.7			Approach LOS		20.0 C			02.5 E			00.0 C			A														А			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	9.0	44.9	5.1	31.0	9.0	44.9	9.0	27.1						Change Period (Y+Rc), s	4.0	* 5	4.0	* 5	4.0	* 5	4.0	* 5						Max Green Setting (Gmax), s	5.0	* 36	5.0	* 26	5.0	* 36	5.0	* 26						Max Q Clear Time (g_c+I1), s	7.0	17.2	2.4	28.7	6.8	37.3	7.0	10.4						Green Ext Time (p_c), s	0.0	13.9	0.0	0.0	0.0	0.0	0.0	2.0						Intersection Summary														HCM 6th Ctrl Delay			28.8											HCM 6th LOS			С										^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		۶	→	\rightarrow	•	←	•	•	†	/	-	ļ	4		------------------------------	------	------------	---------------	------	------------	------	------	----------	----------	------	------	----------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ β		ሻ	↑ ↑		ሻ	ተተተ	7	ሻ	ተተተ	7		Traffic Volume (veh/h)	100	340	100	210	380	160	150	1960	50	270	2100	70		Future Volume (veh/h)	100	340	100	210	380	160	150	1960	50	270	2100	70		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	0.99		0.97	0.99		0.97	1.00		0.98	1.00		0.98		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	102	347	68	214	388	106	153	2000	24	276	2143	36		Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	269	707	137	299	658	177	235	2237	753	252	2408	806		Arrive On Green	0.06	0.24	0.23	0.06	0.24	0.23	0.06	0.44	0.43	0.18	0.94	0.92		Sat Flow, veh/h	1781	2951	571	1781	2745	740	1781	5106	1557	1781	5106	1559		Grp Volume(v), veh/h	102	207	208	214	249	245	153	2000	24	276	2143	36		Grp Sat Flow(s),veh/h/ln	1781	1777	1745	1781	1777	1708	1781	1702	1557	1781	1702	1559		Q Serve(g_s), s	3.9	9.0	9.3	5.0	11.2	11.5	4.4	32.6	0.7	8.0	13.4	0.2		Cycle Q Clear(g_c), s	3.9	9.0	9.3	5.0	11.2	11.5	4.4	32.6	0.7	8.0	13.4	0.2		Prop In Lane	1.00		0.33	1.00		0.43	1.00		1.00	1.00		1.00		Lane Grp Cap(c), veh/h	269	426	418	299	426	409	235	2237	753	252	2408	806		V/C Ratio(X)	0.38	0.49	0.50	0.72	0.59	0.60	0.65	0.89	0.03	1.09	0.89	0.04		Avail Cap(c_a), veh/h	269	533	523	299	533	512	235	2237	753	252	2408	806		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.25	0.25	0.25		Uniform Delay (d), s/veh	25.3	29.5	29.7	31.2	30.3	30.6	16.2	23.4	12.2	19.5	1.7	1.6		Incr Delay (d2), s/veh	0.9	0.9	0.9	7.9	1.3	1.4	6.2	6.0	0.1	57.9	1.5	0.0		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	2.9	6.8	6.9	4.6	8.2	8.2	3.7	19.2	0.4	8.9	2.0	0.1		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	26.2	30.3	30.6	39.1	31.5	32.0	22.4	29.4	12.3	77.4	3.2	1.6		LnGrp LOS	С	С	С	D	С	С	С	С	В	F	Α	<u>A</u>		Approach Vol, veh/h		517			708			2177			2455			Approach Delay, s/veh		29.6			34.0			28.7			11.5			Approach LOS		С			С			С			В			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	9.0	46.4	9.0	25.6	12.0	43.4	9.0	25.6						Change Period (Y+Rc), s	4.0	* 5	4.0	* 5	4.0	* 5	4.0	* 5						Max Green Setting (Gmax), s	5.0	* 36	5.0	* 26	8.0	* 33	5.0	* 26						Max Q Clear Time (g_c+l1), s	6.4	15.4	5.9	13.5	10.0	34.6	7.0	11.3						Green Ext Time (p_c), s	0.0	15.8	0.0	2.2	0.0	0.0	0.0	2.0						Intersection Summary														HCM 6th Ctrl Delay			22.2																																																																																																																																																																																																																																												
								HCM 6th LOS			22.2 C											HOW OUT LOS			C										^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		ၨ	•	4	†	ļ	4		------------------------------	------	------	-------	----------	------	------		Movement	EBL	EBR	NBL	NBT	SBT	SBR		Lane Configurations		וווו	ነነነነ		1111	1		Traffic Volume (veh/h)	0	2660	1870	0	2300	10		Future Volume (veh/h)	0	2660	1870	0	2300	10		Initial Q (Qb), veh	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach	No			No	No			Adj Sat Flow, veh/h/ln	0	1870	1870	0	1870	1870		Adj Flow Rate, veh/h	0	2771	1948	0	2396	0		Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		Percent Heavy Veh, %	0	2	2	0	2	2		Cap, veh/h	0	0	2532	0	0	_		Arrive On Green	0.00	0.00	0.39	0.00	0.00	0.00		Sat Flow, veh/h	0.00	0.00	6484	1948	0.00	0.00			0.0		1948	24.7	0.0			Grp Volume(v), veh/h	0.0				0.0			Grp Sat Flow(s), veh/h/ln			1621	С				Q Serve(g_s), s			23.6					Cycle Q Clear(g_c), s			23.6					Prop In Lane			1.00					Lane Grp Cap(c), veh/h			2532					V/C Ratio(X)			0.77					Avail Cap(c_a), veh/h			3444					HCM Platoon Ratio			1.00					Upstream Filter(I)			1.00					Uniform Delay (d), s/veh			23.9					Incr Delay (d2), s/veh			8.0					Initial Q Delay(d3),s/veh			0.0					%ile BackOfQ(95%),veh/ln			13.4					Unsig. Movement Delay, s/veh								LnGrp Delay(d),s/veh			24.7					LnGrp LOS			С					Approach Vol, veh/h								Approach Delay, s/veh								Approach LOS								Approach 200								Timer - Assigned Phs			3					Phs Duration (G+Y+Rc), s			41.3					Change Period (Y+Rc), s			* 6					Max Green Setting (Gmax), s			* 48					Max Q Clear Time (g_c+l1), s			25.6					Green Ext Time (p_c), s			9.8					(i = /:								Intersection Summary			0.4.7					HCM 6th Ctrl Delay			24.7					HCM 6th LOS			С					Notes							# Notes ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.		ၨ	•	•	†	ļ	4		------------------------------	------	------	------	----------	------	------		Movement	EBL	EBR	NBL	NBT	SBT	SBR		Lane Configurations		וווו	ነነነነ		1111	7		Traffic Volume (veh/h)	0	2860	1720	0	2400	20		Future Volume (veh/h)	0	2860	1720	0	2400	20		Initial Q (Qb), veh	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach	No			No	No			Adj Sat Flow, veh/h/ln	0	1870	1870	0	1870	1870		Adj Flow Rate, veh/h	0	2918	1755	0	2449	0		Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98		Percent Heavy Veh, %	0.50	2	2	0.00	2	2		Cap, veh/h	0	0	2300	0	0			Arrive On Green	0.00	0.00	0.35	0.00	0.00	0.00		Sat Flow, veh/h	0.00	0.00	6484	1755	0.00	0.00										Grp Volume(v), veh/h	0.0		1755	26.3	0.0			Grp Sat Flow(s), veh/h/ln			1621	С				Q Serve(g_s), s			21.6					Cycle Q Clear(g_c), s			21.6					Prop In Lane			1.00					Lane Grp Cap(c), veh/h			2300					V/C Ratio(X)			0.76					Avail Cap(c_a), veh/h			3444					HCM Platoon Ratio			1.00					Upstream Filter(I)			1.00					Uniform Delay (d), s/veh			25.7					Incr Delay (d2), s/veh			0.6					Initial Q Delay(d3),s/veh			0.0					%ile BackOfQ(95%),veh/ln			12.4					Unsig. Movement Delay, s/veh								LnGrp Delay(d),s/veh			26.3					LnGrp LOS			С					Approach Vol, veh/h								Approach Delay, s/veh								Approach LOS								Approach 200								Timer - Assigned Phs			3					Phs Duration (G+Y+Rc), s			38.1					Change Period (Y+Rc), s			* 6					Max Green Setting (Gmax), s			* 48					Max Q Clear Time (g_c+l1), s			23.6					Green Ext Time (p_c), s			8.6					(i = /:								Intersection Summary			00.0					HCM 6th Ctrl Delay			26.3					HCM 6th LOS			С					Notes							# Notes ^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [SBR] is excluded from calculations of the approach delay and intersection delay.		•	•	†	~	-	ļ				-------------------------------	------------	-------	----------	------	------------	------------------	-----	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations		11	ተተኈ		ሻሻ	^				Traffic Volume (vph)	0	950	3830	150	420	2710				Future Volume (vph)	0	950	3830	150	420	2710				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)		4.0	5.0		4.0	4.0				Lane Util. Factor		0.88	0.91		0.97	0.91				Frpb, ped/bikes		1.00	1.00		1.00	1.00				Flpb, ped/bikes		1.00	1.00		1.00	1.00				Frt		0.85	0.99		1.00	1.00				Flt Protected		1.00	1.00		0.95	1.00				Satd. Flow (prot)		2787	5048		3433	5085				Flt Permitted		1.00	1.00		0.95	1.00				Satd. Flow (perm)		2787	5048		3433	5085				Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96				Adj. Flow (vph)	0	990	3990	156	438	2823				RTOR Reduction (vph)	0	0	4	0	0	0				Lane Group Flow (vph)	0	990	4142	0	438	2823				Confl. Peds. (#/hr)				15	15					Turn Type		Over	NA		Prot	NA				Protected Phases		1	2		1	Free				Permitted Phases										Actuated Green, G (s)		34.0	77.0		34.0	120.0				Effective Green, g (s)		34.0	77.0		34.0	120.0				Actuated g/C Ratio		0.28	0.64		0.28	1.00				Clearance Time (s)		4.0	5.0		4.0					Vehicle Extension (s)		3.0	3.0		3.0					Lane Grp Cap (vph)		789	3239		972	5085				v/s Ratio Prot		c0.36	c0.82		0.13	0.56				v/s Ratio Perm										v/c Ratio		1.25	1.28		0.45	0.56				Uniform Delay, d1		43.0	21.5		35.3	0.0				Progression Factor		1.00	1.00		1.00	1.00				Incremental Delay, d2		124.9	128.0		0.3	0.4				Delay (s)		167.9	149.5		35.7	0.4				Level of Service		F	F		D	Α				Approach Delay (s)	167.9		149.5			5.2				Approach LOS	F		F			Α				Intersection Summary										HCM 2000 Control Delay			95.6	Н	CM 2000	Level of Service	F			HCM 2000 Volume to Capa	city ratio		1.27							Actuated Cycle Length (s)			120.0	Sı	um of lost	time (s)	9.0			Intersection Capacity Utiliza	ation		118.1%			of Service	Н			Analysis Period (min)			15							c Critical Lane Group											•	•	†	~	-	†				-------------------------------	------------	-------	----------	------	------------	------------------	-----	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations		11	ተተኈ		ሻሻ	ተተተ				Traffic Volume (vph)	0	810	3750	280	290	2670				Future Volume (vph)	0	810	3750	280	290	2670				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)		4.0	5.0		4.0	4.0				Lane Util. Factor		0.88	0.91		0.97	0.91				Frpb, ped/bikes		1.00	0.99		1.00	1.00				Flpb, ped/bikes		1.00	1.00		1.00	1.00				Frt		0.85	0.99		1.00	1.00				Flt Protected		1.00	1.00		0.95	1.00				Satd. Flow (prot)		2787	5005		3433	5085				Flt Permitted		1.00	1.00		0.95	1.00				Satd. Flow (perm)		2787	5005		3433	5085				Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97				Adj. Flow (vph)	0	835	3866	289	299	2753				RTOR Reduction (vph)	0	0	7	0	0	0				Lane Group Flow (vph)	0	835	4148	0	299	2753				Confl. Peds. (#/hr)				30	30					Turn Type		Over	NA		Prot	NA				Protected Phases		1	2		1	Free				Permitted Phases										Actuated Green, G (s)		30.0	81.0		30.0	120.0				Effective Green, g (s)		30.0	81.0		30.0	120.0				Actuated g/C Ratio		0.25	0.68		0.25	1.00				Clearance Time (s)		4.0	5.0		4.0					Vehicle Extension (s)		3.0	3.0		3.0					Lane Grp Cap (vph)		696	3378		858	5085				v/s Ratio Prot		c0.30	c0.83		0.09	0.54				v/s Ratio Perm										v/c Ratio		1.20	1.23		0.35	0.54				Uniform Delay, d1		45.0	19.5		37.0	0.0				Progression Factor		1.00	1.00		1.00	1.00				Incremental Delay, d2		103.4	105.4		0.2	0.4				Delay (s)		148.4	124.9		37.2	0.4				Level of Service		F	F		D	Α																																									
Approach Delay (s)	148.4		124.9			4.0				Approach LOS	F		F			Α				Intersection Summary										HCM 2000 Control Delay			81.4	Н	CM 2000	Level of Service	F			HCM 2000 Volume to Capa	city ratio		1.22							Actuated Cycle Length (s)			120.0	Sı	um of lost	time (s)	9.0			Intersection Capacity Utiliza	ation		114.7%			of Service	Н			Analysis Period (min)			15							c Critical Lane Group											•	•	†	/	-	↓				-------------------------------	---------------	-----------	--	----------	------------	------------------	------	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations	757	77	######################################			ተተተ				Traffic Volume (vph)	390	540	4665	90	0	2710				Future Volume (vph)	390	540	4665	90	0	2710				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)	6.1	6.1	5.0			5.0				Lane Util. Factor	0.97	0.88	0.86			0.91				Frpb, ped/bikes	1.00	0.92	1.00			1.00				Flpb, ped/bikes	1.00	1.00	1.00			1.00				Frt	1.00	0.85	1.00			1.00				Flt Protected	0.95	1.00	1.00			1.00				Satd. Flow (prot)	3433	2552	6390			5085				FIt Permitted	0.95	1.00	1.00			1.00				Satd. Flow (perm)	3433	2552	6390			5085				Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96				Adj. Flow (vph)	406	562	4859	94	0	2823				RTOR Reduction (vph)	0	0	2	0	0	0				Lane Group Flow (vph)	406	563	4951	0	0	2823				Confl. Peds. (#/hr)		80								Turn Type	Perm	Perm	NA			NA				Protected Phases		. 0	2			2				Permitted Phases	4	4	-			<u>-</u>				Actuated Green, G (s)	32.3	32.3	76.6			76.6				Effective Green, g (s)	32.3	32.3	76.6			76.6				Actuated g/C Ratio	0.27	0.27	0.64			0.64				Clearance Time (s)	6.1	6.1	5.0			5.0				Vehicle Extension (s)	3.0	3.0	3.0			3.0				Lane Grp Cap (vph)	924	686	4078			3245				v/s Ratio Prot	3 2 -7	000	c0.77			0.56				v/s Ratio Perm	0.12	c0.22	00.77			0.00				v/c Ratio	0.12	0.82	1.21			0.87				Uniform Delay, d1	36.3	41.1	21.7			17.6				Progression Factor	1.00	1.00	1.00			1.00				Incremental Delay, d2	0.3	7.8	98.8			3.5				Delay (s)	36.7	48.9	120.5			21.2				Level of Service	D	70.5 D	120.5 F			C				Approach Delay (s)	43.8	<u> </u>	120.5			21.2				Approach LOS	43.0 D		F			C				Intersection Summary										HCM 2000 Control Delay			79.9	H	CM 2000	Level of Service	Е			HCM 2000 Volume to Capa	city ratio		1.10							Actuated Cycle Length (s)			120.0	Sı	um of lost	time (s)	11.1			Intersection Capacity Utiliza	ation		110.3%	IC	U Level o	of Service	Н			Analysis Period (min)			15							c Critical Lane Group											•	•	†	/	>	↓				-------------------------------	-------------	------	--	------	-------------	------------------	------	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations	ሻሻ	77	######################################			ተተተ				Traffic Volume (vph)	650	320	4840	30	0	2670				Future Volume (vph)	650	320	4840	30	0	2670				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)	6.1	6.1	5.0			5.0				Lane Util. Factor	0.97	0.88	0.86			0.91				Frpb, ped/bikes	1.00	0.91	1.00			1.00				Flpb, ped/bikes	1.00	1.00	1.00			1.00				Frt	1.00	0.85	1.00			1.00				Flt Protected	0.95	1.00	1.00			1.00				Satd. Flow (prot)	3433	2526	6402			5085				FIt Permitted	0.95	1.00	1.00			1.00				Satd. Flow (perm)	3433	2526	6402			5085				Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96				Adj. Flow (vph)	677	333	5042	31	0.90	2781				RTOR Reduction (vph)	0//	0	1	0	0	0				(, ,					0					Lane Group Flow (vph)	677	333	5072	0	U	2781				Confl. Peds. (#/hr)		90								Turn Type	Perm	Perm	NA			NA				Protected Phases			2			2				Permitted Phases	4	4								Actuated Green, G (s)	30.1	30.1	78.8			78.8				Effective Green, g (s)	30.1	30.1	78.8			78.8				Actuated g/C Ratio	0.25	0.25	0.66			0.66				Clearance Time (s)	6.1	6.1	5.0			5.0				Vehicle Extension (s)	3.0	3.0	3.0			3.0				Lane Grp Cap (vph)	861	633	4203			3339				v/s Ratio Prot			c0.79			0.55				v/s Ratio Perm	c0.20	0.13								v/c Ratio	0.79	0.53	1.21			0.83				Uniform Delay, d1	41.9	38.8	20.6			15.6				Progression Factor	1.00	1.00	1.00			1.00				Incremental Delay, d2	4.8	0.8	95.5			2.6				Delay (s)	46.7	39.6	116.1			18.2				Level of Service	D	D	F			В				Approach Delay (s)	44.4		116.1			18.2				Approach LOS	D		F			В				Intersection Summary										HCM 2000 Control Delay			77.2	H	CM 2000	Level of Service	Е			HCM 2000 Volume to Capa	acity ratio		1.09							Actuated Cycle Length (s)			120.0	S	um of lost	time (s)	11.1			Intersection Capacity Utiliza	ation		111.7%	IC	CU Level o	of Service	Н			Analysis Period (min)			15							c Critical Lane Group											€	•	†	~	-	↓					-------------------------------	-------------	---------	----------	------	------------	------------------	---	----------	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT					Lane Configurations		777	^			^					Traffic Volume (vph)	0	2510	2360	0	0	3330					Future Volume (vph)	0	2510	2360	0	0	3330					Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					Total Lost time (s)		4.0	4.0			4.0					Lane Util. Factor		0.76	0.91			0.95					Frt		0.85	1.00			1.00					Flt Protected		1.00	1.00			1.00					Satd. Flow (prot)		3610	5085			3539					Flt Permitted		1.00	1.00			1.00					Satd. Flow (perm)		3610	5085			3539					Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95					Adj. Flow (vph)	0.50	2642	2484	0.50	0.50	3505					RTOR Reduction (vph)	0	0	0	0	0	0					Lane Group Flow (vph)	0	2642	2484	0	0	3505					Turn Type	<u> </u>	Perm	NA			NA					Protected Phases		1 Cilli	2			14/4					Permitted Phases		8				28					Actuated Green, G (s)		48.0	35.0			90.0					Effective Green, g (s)		47.0	35.0			87.0					Actuated g/C Ratio		0.52	0.39			0.97					Clearance Time (s)		3.0	4.0			0.01					Vehicle Extension (s)		3.0	3.0								Lane Grp Cap (vph)		1885	1977			3421					v/s Ratio Prot		1005	c0.49			3421					v/s Ratio Perm		c0.73	60.43			0.99					v/c Ratio		1.40	1.26			1.02					Uniform Delay, d1		21.5	27.5			1.5					Progression Factor		1.00	1.00			1.00					Incremental Delay, d2		184.0	119.7			22.1					Delay (s)		205.5	147.2			23.6					Level of Service		Z00.5	F			C C					Approach Delay (s)	205.5		147.2			23.6					Approach LOS	200.5 F		F			C C					Intersection Summary											HCM 2000 Control Delay			114.8	H	CM 2000	Level of Servic	2	F			HCM 2000 Volume to Capa	city ratio		1.32	- 11	CIVI 2000	_0V01 01 001 VIC					Actuated Cycle Length (s)	ionly rullo		90.0	Sı	um of lost	time (s)		7.0			Intersection Capacity Utiliza	ation		110.8%			of Service		7.0 H			Analysis Period (min)	AU/011		15	10	O LOVEI C	71 OCT VICE		11			Allarysis i Gilou (IIIII)			13									•	*	†	~	-	↓					-------------------------------	------------	---------	----------	------	------------	-----------------	---	-----	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT					Lane Configurations		777	^			^					Traffic Volume (vph)	0	2280	2780	0	0	3010					Future Volume (vph)	0	2280	2780	0	0	3010					Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900					Total Lost time (s)		4.0	4.0			4.0					Lane Util. Factor		0.76	0.91			0.95					Frt		0.85	1.00			1.00					Flt Protected		1.00	1.00			1.00					Satd. Flow (prot)		3610	5085			3539					Flt Permitted		1.00	1.00			1.00					Satd. Flow (perm)		3610	5085			3539					Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94					Adj. Flow (vph)	0.54	2426	2957	0.54	0.54	3202					RTOR Reduction (vph)	0	0	0	0	0	0					Lane Group Flow (vph)	0	2426	2957	0	0	3202					Turn Type	
		IWA					Permitted Phases		8				28					Actuated Green, G (s)		44.0	39.0			90.0					Effective Green, g (s)		43.0	39.0			87.0					Actuated g/C Ratio		0.48	0.43			0.97					Clearance Time (s)		3.0	4.0			0.07					Vehicle Extension (s)		3.0	3.0								Lane Grp Cap (vph)		1724	2203			3421					v/s Ratio Prot		1127	c0.58			0421					v/s Ratio Perm		c0.67	00.00			0.90					v/c Ratio		1.41	1.34			0.94					Uniform Delay, d1		23.5	25.5			0.5					Progression Factor		1.00	1.00			1.00					Incremental Delay, d2		186.8	157.2			5.7					Delay (s)		210.3	182.7			6.2					Level of Service		F	F			A					Approach Delay (s)	210.3		182.7			6.2					Approach LOS	F		F			A					Intersection Summary											HCM 2000 Control Delay			124.7	H	CM 2000	Level of Servic	9	F			HCM 2000 Volume to Capa	city ratio		1.36								Actuated Cycle Length (s)			90.0	Sı	um of lost	time (s)		7.0			Intersection Capacity Utiliza	ation		113.6%			of Service		Н			Analysis Period (min)			15								0 ''' 11 0												ၨ	→	•	•	←	•	•	†	/	>	ļ	4		------------------------------	------	---	------	------	----------	------	------	----------	------	-------------	--	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻሻ	ተተተ	7	777	^	7	ሻ	ተተተ	77	ሻሻ	######################################			Traffic Volume (veh/h)	250	360	220	210	200	400	200	1710	600	600	2720	10		Future Volume (veh/h)	250	360	220	210	200	400	200	1710	600	600	2720	10		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.98	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	272	391	29	228	217	393	217	1859	368	652	2957	10		Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	269	908	279	269	908	579	218	1929	1037	653	2964	10		Arrive On Green	0.08	0.18	0.18	0.08	0.18	0.18	0.12	0.38	0.38	0.19	0.44	0.44		Sat Flow, veh/h	3456	5106	1572	3456	5106	1572	1781	5106	2745	3456	6669	23		Grp Volume(v), veh/h	272	391	29	228	217	393	217	1859	368	652	2139	828		Grp Sat Flow(s), veh/h/ln	1728	1702	1572	1728	1702	1572	1781	1702	1373	1728	1609	1866		Q Serve(g_s), s	7.0	6.1	1.4	5.9	3.3	16.0	11.0	32.1	8.7	17.0	39.8	39.9		Cycle Q Clear(g_c), s	7.0	6.1	1.4	5.9	3.3	16.0	11.0	32.1	8.7	17.0	39.8	39.9		Prop In Lane	1.00	• • • • • • • • • • • • • • • • • • • •	1.00	1.00	0.0	1.00	1.00	V	1.00	1.00	00.0	0.01		Lane Grp Cap(c), veh/h	269	908	279	269	908	579	218	1929	1037	653	2145	829		V/C Ratio(X)	1.01	0.43	0.10	0.85	0.24	0.68	1.00	0.96	0.35	1.00	1.00	1.00		Avail Cap(c_a), veh/h	269	908	279	269	908	579	218	1929	1037	653	2145	829		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	41.5	32.9	31.0	41.0	31.8	24.1	39.5	27.4	20.1	36.5	24.9	25.0		Incr Delay (d2), s/veh	58.0	0.3	0.2	21.7	0.1	3.2	60.0	13.5	1.0	34.9	18.8	30.8		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	8.7	4.4	0.9	5.8	2.4	11.4	13.0	20.8	4.9	15.3	24.4	31.0		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	99.5	33.3	31.2	62.6	31.9	27.3	99.5	40.9	21.1	71.4	43.8	55.8		LnGrp LOS	F	С	С	Е	С	С	F	D	С	Е	D	Е		Approach Vol, veh/h		692			838			2444			3619			Approach Delay, s/veh		59.2			38.1			43.2			51.5			Approach LOS		E			D			D			D			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	21.0	38.0	11.0	20.0	15.0	44.0	11.0	20.0						Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	44.0	4.0	4.0						Max Green Setting (Gmax), s	17.0	34.0	7.0	16.0	11.0	40.0	7.0	16.0						Max Q Clear Time (g_c+l1), s	19.0	34.1	7.0	8.1	13.0	41.9	9.0	18.0						Green Ext Time (p_c), s	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0						u = 7:	0.0	0.0	0.0	1.5	0.0	0.0	0.0	0.0						Intersection Summary			40.0											HCM 6th Ctrl Delay			48.0											HCM 6th LOS			D											Notes															ၨ	→	•	•	←	•	•	†	~	>	ļ	4		------------------------------	------	----------	------	-------	---	----------	----------	----------	------	-------------	-----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻሻ	ተተተ	7	1,1	ተተተ	7	ሻ	ተተተ	77	44	####			Traffic Volume (veh/h)	220	340	170	340	390	600	290	1960	960	560	2420	30		Future Volume (veh/h)	220	340	170	340	390	600	290	1960	960	560	2420	30		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	229	354	19	354	406	583	302	2042	713	583	2521	29		Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	300	898	276	307	908	544	297	1996	1078	576	2582	30		Arrive On Green	0.09	0.18	0.18	0.09	0.18	0.18	0.17	0.39	0.39	0.17	0.39	0.39		Sat Flow, veh/h	3456	5106	1572	3456	5106	1572	1781	5106	2758	3456	6605	76		Grp Volume(v), veh/h	229	354	19	354	406	583	302	2042	713	583	1841	709		Grp Sat Flow(s), veh/h/ln	1728	1702	1572	1728	1702	1572	1781	1702	1379	1728	1609	1856		Q Serve(g_s), s	5.8	5.5	0.9	8.0	6.4	16.0	15.0	35.2	19.1	15.0	33.8	33.9		Cycle Q Clear(g_c), s	5.8	5.5	0.9	8.0	6.4	16.0	15.0	35.2	19.1	15.0	33.8	33.9		Prop In Lane	1.00	0.0	1.00	1.00	• • • • • • • • • • • • • • • • • • • •	1.00	1.00	00.2	1.00	1.00	00.0	0.04		Lane Grp Cap(c), veh/h	300	898	276	307	908	544	297	1996	1078	576	1886	725		V/C Ratio(X)	0.76	0.39	0.07	1.15	0.45	1.07	1.02	1.02	0.66	1.01	0.98	0.98		Avail Cap(c_a), veh/h	307	908	279	307	908	544	297	1996	1078	576	1886	725		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	40.2	32.8	30.9	41.0	33.1	29.5	37.5	27.4	22.5	37.5	27.0	27.0		Incr Delay (d2), s/veh	10.5	0.3	0.1	99.2	0.3	59.5	56.7	26.2	3.2	40.6	15.8	28.2		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	5.1	4.0	0.6	12.6	4.6	28.1	16.6	25.5	10.3	14.5	21.1	26.8		Unsig. Movement Delay, s/veh	0.1	1.0	0.0	12.0	1.0	20.1	10.0	20.0	10.0	1 1.0		20.0		LnGrp Delay(d),s/veh	50.7	33.1	31.0	140.2	33.4	89.0	94.2	53.6	25.7	78.1	42.8	55.3		LnGrp LOS	D	C	C	F	C	F	F	F	C	F	D	E		Approach Vol, veh/h		602		•	1343	<u> </u>	<u> </u>	3057		•	3133			Approach Delay, s/veh		39.8			85.7			51.1			52.2			Approach LOS		D D			65.7 F			D			52.2 D														U			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	19.0	39.2	12.0	19.8	19.0	39.2	11.8	20.0						Change Period (Y+Rc), s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0						Max Green Setting (Gmax), s	15.0	35.0	8.0	16.0	15.0	35.0	8.0	16.0						Max Q Clear Time (g_c+I1), s	17.0	37.2	10.0	7.5	17.0	35.9	7.8	18.0						Green Ext Time (p_c), s	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0						Intersection Summary														HCM 6th Ctrl Delay			56.4																																																																																																																																																			
		HCM 6th LOS			Е											Notes															۶	→	•	•	←	•	•	†	/	>	ļ	4		------------------------------	------	------------	------	------	------------	------	------	----------	------	-------------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	∱ β		ሻ	↑ ↑		7	1	7	*	ħβ			Traffic Volume (veh/h)	50	650	300	30	1310	30	360	20	100	40	10	10		Future Volume (veh/h)	50	650	300	30	1310	30	360	20	100	40	10	10		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	0.96		0.95		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	52	670	263	31	1351	30	371	21	67	41	10	1		Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	208	1269	498	330	2075	46	391	614	563	160	210	21		Arrive On Green	0.51	0.51	0.51	0.03	0.58	0.58	0.22	0.33	0.33	0.06	0.06	0.06		Sat Flow, veh/h	392	2488	977	1781	3554	79	1781	1870	1571	1255	3253	318		Grp Volume(v), veh/h	52	478	455	31	675	706	371	21	67	41	5	6		Grp Sat Flow(s),veh/h/ln	392	1777	1688	1781	1777	1856	1781	1870	1571	1255	1777	1795		Q Serve(g_s), s	9.3	16.4	16.4	0.7	23.2	23.3	18.7	0.7	2.6	2.9	0.3	0.3		Cycle Q Clear(g_c), s	25.9	16.4	16.4	0.7	23.2	23.3	18.7	0.7	2.6	2.9	0.3	0.3		Prop In Lane	1.00		0.58	1.00		0.04	1.00		1.00	1.00		0.18		Lane Grp Cap(c), veh/h	208	906	861	330	1037	1083	391	614	563	160	115	116		V/C Ratio(X)	0.25	0.53	0.53	0.09	0.65	0.65	0.95	0.03	0.12	0.26	0.05	0.05		Avail Cap(c_a), veh/h	208	906	861	375	1037	1083	391	945	841	383	430	434		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	23.7	15.0	15.0	10.9	12.7	12.7	35.0	20.8	19.6	41.2	39.9	39.9		Incr Delay (d2), s/veh	2.9	2.2	2.3	0.1	3.2	3.0	32.3	0.0	0.1	0.8	0.2	0.2		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	1.8	10.6	10.3	0.5	13.6	14.1	16.9	0.5	1.7	1.7	0.2	0.2		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	26.5	17.2	17.3	11.0	15.9	15.8	67.2	20.8	19.7	42.0	40.1	40.1		LnGrp LOS	С	В	В	В	В	В	Е	С	В	D	D	D		Approach Vol, veh/h		985			1412			459			52			Approach Delay, s/veh		17.7			15.7			58.2			41.6			Approach LOS		В			В			Е			D			Timer - Assigned Phs		2	3	4	5	6		8						Phs Duration (G+Y+Rc), s		57.1	24.0	9.9	6.7	50.4		33.9						Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0		4.0						Max Green Setting (Gmax), s		37.0	20.0	22.0	5.0	28.0		46.0						Max Q Clear Time (g_c+l1), s		25.3	20.7	4.9	2.7	27.9		4.6						Green Ext Time (p_c), s		6.7	0.0	0.1	0.0	0.1		0.3						Intersection Summary														HCM 6th Ctrl Delay			23.6											HCM 6th LOS			C											Notes															۶	→	•	•	←	•	4	†	/	-	ţ	4		------------------------------	------	------------	------	------	------------	------	----------	----------	------	------	-----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ β		ሻ	↑ ↑		ሻ	1	7	ሻ	ħβ			Traffic Volume (veh/h)	50	400	320	60	1000	30	610	20	240	120	30	40		Future Volume (veh/h)	50	400	320	60	1000	30	610	20	240	120	30	40		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	0.98		0.97		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	52	412	185	62	1031	29	629	21	190	124	31	5		Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	191	840	373	334	1555	44	495	880	808	250	454	71		Arrive On Green	0.35	0.35	0.35	0.04	0.44	0.44	0.28	0.47	0.47	0.15	0.15	0.15		Sat Flow, veh/h	532	2384	1057	1781	3529	99	1781	1870	1570	1144	3064	479		Grp Volume(v), veh/h	52	306	291	62	519	541	629	21	190	124	18	18		Grp Sat Flow(s), veh/h/ln	532	1777	1664	1781	1777	1851	1781	1870	1570	1144	1777	1766		Q Serve(g_s), s	7.7	12.1	12.4	1.9	20.8	20.8	25.0	0.5	6.0	9.3	0.8	0.8		Cycle Q Clear(g_c), s	20.6	12.1	12.4	1.9	20.8	20.8	25.0	0.5	6.0	9.3	0.8	0.8		Prop In Lane	1.00	12.1	0.64	1.00	20.0	0.05	1.00	0.0	1.00	1.00	0.0	0.27		Lane Grp Cap(c), veh/h	191	626	586	334	783	816	495	880	808	250	263	262		V/C Ratio(X)	0.27	0.49	0.50	0.19	0.66	0.66	1.27	0.02	0.24	0.50	0.07	0.07		Avail Cap(c_a), veh/h	191	626	586	355	783	816	495	1060	959	360	434	432		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	31.2	22.8	22.9	17.0	19.9	19.9	32.5	12.8	12.1	36.6	33.0	33.0		Incr Delay (d2), s/veh	3.5	2.7	3.0	0.3	4.4	4.2	137.2	0.0	0.1	1.5	0.1	0.1		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	2.0	9.0	8.7	1.3	13.6	14.0	43.5	0.4	3.7	4.8	0.6	0.6		Unsig. Movement Delay, s/veh		5.0	0.1	1.0	10.0	14.0	₹0.0	₩.¬	0.1	7.0	0.0	0.0		LnGrp Delay(d),s/veh	34.6	25.5	25.9	17.3	24.3	24.1	169.7	12.8	12.2	38.1	33.1	33.1		LnGrp LOS	C C	C	C	В	C C	C	F	В	В	D	C	C		Approach Vol, veh/h		649			1122		<u> </u>	840			160			Approach Delay, s/veh		26.4			23.8			130.2			37.0			Approach LOS		20.4 C			23.0 C			F			37.0 D			Apploach EOS					U						U			Timer - Assigned Phs		2	3	4	5	6		8						Phs Duration (G+Y+Rc), s		43.7	29.0	17.3	7.9	35.7		46.3						Change Period (Y+Rc), s		4.0	4.0	4.0	4.0	4.0		4.0						Max Green Setting (Gmax), s		31.0	25.0	22.0	5.0	22.0		51.0						Max Q Clear Time (g_c+I1), s		22.8	27.0	11.3	3.9	22.6		8.0						Green Ext Time (p_c), s		4.0	0.0	0.4	0.0	0.0		0.8						Intersection Summary														HCM 6th Ctrl Delay			57.4											HCM 6th LOS			Е											Notes															۶	→	•	•	←	•	4	†	/	-	ļ	4		-----------------------------------	---------	----------	-------	------	-------------	------------	---------	----------	------	------	----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations		1111	7	ሻ	4111			^↑	7	ሻ	†	7		Traffic Volume (vph)	0	1890	170	130	2450	50	0	150	130	30	290	230		Future Volume (vph)	0	1890	170	130	2450	50	0	150	130	30	290	230		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	10	10	12	12	10	12	12	12	12	12	12	12		Total Lost time (s)		4.0	4.0	4.0	4.0			4.0	4.0	4.0	4.0	4.0		Lane Util. Factor		0.86	1.00	1.00	0.86			0.95	1.00	1.00	1.00	1.00		Frpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00		Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00		Frt		1.00	0.85	1.00	1.00			1.00	0.85	1.00	1.00	0.85		Flt Protected		1.00	1.00	0.95	1.00			1.00	1.00	0.95	1.00	1.00		Satd. Flow (prot)		5981	1583	1770	5947			3539	1583	1770	1863	1583		Flt Permitted		1.00	1.00	0.95	1.00			1.00	1.00	0.65	1.00	1.00		Satd. Flow (perm)		5981	1583	1770	5947			3539	1583	1219	1863	1583		Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Adj.																																																																																																															
Flow (vph)	0	1929	173	133	2500	51	0	153	133	31	296	235		RTOR Reduction (vph)	0	0	86	0	2	0	0	0	95	0	0	32		Lane Group Flow (vph)	0	1929	87	133	2549	0	0	153	38	31	296	203		Confl. Peds. (#/hr)						60								Turn Type		NA	Perm	Prot	NA			NA	Perm	Perm	NA	Perm		Protected Phases		6		5	2			8			4			Permitted Phases			6						8	4		4		Actuated Green, G (s)		60.1	60.1	13.9	78.0			34.0	34.0	34.0	34.0	34.0		Effective Green, g (s)		60.1	60.1	13.9	78.0			34.0	34.0	34.0	34.0	34.0		Actuated g/C Ratio		0.50	0.50	0.12	0.65			0.28	0.28	0.28	0.28	0.28		Clearance Time (s)		4.0	4.0	4.0	4.0			4.0	4.0	4.0	4.0	4.0		Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0		Lane Grp Cap (vph)		2995	792	205	3865			1002	448	345	527	448		v/s Ratio Prot		0.32		80.0	c0.43			0.04			c0.16			v/s Ratio Perm			0.05						0.02	0.03		0.13		v/c Ratio		0.64	0.11	0.65	0.66			0.15	80.0	0.09	0.56	0.45		Uniform Delay, d1		22.1	15.8	50.7	12.9			32.2	31.6	31.6	36.6	35.3		Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00		Incremental Delay, d2		1.1	0.3	6.9	0.9			0.3	0.4	0.1	1.4	0.7		Delay (s)		23.1	16.1	57.6	13.8			32.5	31.9	31.7	38.0	36.1		Level of Service		С	В	Е	В			С	С	С	D	D		Approach Delay (s)		22.6			15.9			32.3			36.9			Approach LOS		С			В			С			D			Intersection Summary														HCM 2000 Control Delay			21.3	Н	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capacit	y ratio		0.65											Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			12.0					Intersection Capacity Utilization	n		60.4%			of Service			В					Analysis Period (min)			15										c Critical Lane Group		۶	-	•	•	←	•	4	†	/	-	ļ	1		-----------------------------------	---------	-------	-------	-------	------------	------------	---------	----------	------	------	----------	-------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations		1111	7	ሻ	4111			^	7	ሻ	↑	7		Traffic Volume (vph)	0	2030	190	140	1460	50	0	100	250	30	280	430		Future Volume (vph)	0	2030	190	140	1460	50	0	100	250	30	280	430		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	10	10	12	12	10	12	12	12	12	12	12	12		Total Lost time (s)		4.0	4.0	4.0	4.0			4.0	4.0	4.0	4.0	4.0		Lane Util. Factor		0.86	1.00	1.00	0.86			0.95	1.00	1.00	1.00	1.00		Frpb, ped/bikes		1.00	1.00	1.00	0.99			1.00	0.82	1.00	1.00	1.00		Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00	0.85	1.00	1.00		Frt		1.00	0.85	1.00	1.00			1.00	0.85	1.00	1.00	0.85		Flt Protected		1.00	1.00	0.95	1.00			1.00	1.00	0.95	1.00	1.00		Satd. Flow (prot)		5981	1583	1770	5916			3539	1301	1509	1863	1583		Flt Permitted		1.00	1.00	0.95	1.00			1.00	1.00	0.69	1.00	1.00		Satd. Flow (perm)		5981	1583	1770	5916			3539	1301	1092	1863	1583		Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Adj. Flow (vph)	0	2071	194	143	1490	51	0	102	255	31	286	439		RTOR Reduction (vph)	0	0	0	0	4	0	0	0	166	0	0	29		Lane Group Flow (vph)	0	2071	194	143	1537	0	0	102	89	31	286	410		Confl. Peds. (#/hr)						85			85	85				Turn Type		NA	Perm	Prot	NA			NA	Perm	Perm	NA	Perm		Protected Phases		6		5	2			8			4			Permitted Phases			6						8	4		4		Actuated Green, G (s)		52.2	52.2	13.8	70.0			42.0	42.0	42.0	42.0	42.0		Effective Green, g (s)		52.2	52.2	13.8	70.0			42.0	42.0	42.0	42.0	42.0		Actuated g/C Ratio		0.44	0.44	0.12	0.58			0.35	0.35	0.35	0.35	0.35		Clearance Time (s)		4.0	4.0	4.0	4.0			4.0	4.0	4.0	4.0	4.0		Vehicle Extension (s)		3.0	3.0	3.0	3.0			3.0	3.0	3.0	3.0	3.0		Lane Grp Cap (vph)		2601	688	203	3451			1238	455	382	652	554		v/s Ratio Prot		c0.35		c0.08	0.26			0.03			0.15			v/s Ratio Perm			0.12						0.07	0.03		c0.26		v/c Ratio		0.80	0.28	0.70	0.45			0.08	0.20	0.08	0.44	0.74		Uniform Delay, d1		29.3	21.8	51.1	14.1			26.1	27.2	26.1	29.9	34.2		Progression Factor		1.00	1.00	1.00	1.00			1.00	1.00	1.00	1.00	1.00		Incremental Delay, d2		2.6	1.0	10.6	0.4			0.1	1.0	0.1	0.5	5.1		Delay (s)		31.9	22.9	61.7	14.5			26.2	28.2	26.2	30.4	39.3		Level of Service		С	С	Е	В			С	С	С	С	D		Approach Delay (s)		31.2			18.5			27.6			35.4			Approach LOS		С			В			С			D			Intersection Summary														HCM 2000 Control Delay			27.3	Н	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capacit	y ratio		0.76											Actuated Cycle Length (s)			120.0	S	um of lost	time (s)			12.0					Intersection Capacity Utilization	n		64.6%			of Service			С					Analysis Period (min)			15										c Critical Lane Group		ၨ	→	•	•	←	•	•	†	~	>	ļ	4		------------------------------	------	----------	------	-------	----------	------	------	----------	------	-------------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	J.	^	7	*	^	7	Ţ	^	7	¥	ተተተ	7		Traffic Volume (veh/h)	160	400	170	200	1420	270	210	1070	130	130	390	130		Future Volume (veh/h)	160	400	170	200	1420	270	210	1070	130	130	390	130		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.98	0.99		0.99	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	163	408	80	204	1449	179	214	1092	39	133	398	81		Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	179	1235	647	482	1366	625	407	1066	488	179	1475	541		Arrive On Green	0.06	0.35	0.35	0.09	0.38	0.40	0.07	0.30	0.31	0.06	0.29	0.29		Sat Flow, veh/h	1781	3554	1558	1781	3554	1561	1781	3554	1570	1781	5106	1569		Grp Volume(v), veh/h	163	408	80	204	1449	179	214	1092	39	133	398	81		Grp Sat Flow(s),veh/h/ln	1781	1777	1558	1781	1777	1561	1781	1777	1570	1781	1702	1569		Q Serve(g_s), s	5.0	7.6	2.9	6.3	34.6	7.0	6.0	27.0	1.6	4.8	5.4	3.2		Cycle Q Clear(g_c), s	5.0	7.6	2.9	6.3	34.6	7.0	6.0	27.0	1.6	4.8	5.4	3.2		Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Lane Grp Cap(c), veh/h	179	1235	647	482	1366	625	407	1066	488	179	1475	541		V/C Ratio(X)	0.91	0.33	0.12	0.42	1.06	0.29	0.53	1.02	0.08	0.74	0.27	0.15		Avail Cap(c_a), veh/h	179	1235	647	495	1366	625	407	1066	488	179	1475	541		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	24.5	21.7	16.3	15.7	27.7	18.3	22.7	31.5	21.9	24.7	24.7	20.4		Incr Delay (d2), s/veh	42.8	0.7	0.4	0.6	42.2	1.2	1.2	33.9	0.3	15.3	0.5	0.6		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	7.6	5.6	1.8	4.5	30.5	4.6	1.4	22.9	1.1	4.8	3.9	2.2		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	67.3	22.4	16.7	16.3	69.9	19.5	24.0	65.4	22.2	40.0	25.1	21.0		LnGrp LOS	E	С	В	В	F	В	С	F	С	D	С	С		Approach Vol, veh/h		651			1832			1345			612			Approach Delay, s/veh		32.9			59.0			57.6			27.8			Approach LOS		C			E			E			C C																	Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	10.0	31.0	9.0	40.0	9.0	32.0	12.3	36.7						Change Period (Y+Rc), s	4.0	* 5	4.0	* 5.4	4.0	* 5	4.0	* 5.4						Max Green Setting (Gmax), s	6.0	* 26	5.0	* 35	5.0	* 27	9.0	* 31						Max Q Clear Time (g_c+I1), s	8.0	7.4	7.0	36.6	6.8	29.0	8.3	9.6																																																															
			Green Ext Time (p_c), s	0.0	2.7	0.0	0.0	0.0	0.0	0.0	2.7						Intersection Summary														HCM 6th Ctrl Delay			50.4											HCM 6th LOS			D											Notes													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		ၨ	→	•	•	←	•	4	†	~	>	ļ	4		------------------------------	------	----------	------	-------	----------	------	------	----------	------	-------------	------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	J.	^	7	*	^	7	Ĭ	^	7	¥	ተተተ	7		Traffic Volume (veh/h)	180	730	190	170	1080	210	260	790	370	200	550	120		Future Volume (veh/h)	180	730	190	170	1080	210	260	790	370	200	550	120		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	1.00		0.99	1.00		0.99		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	188	760	152	177	1125	111	271	823	246	208	573	74		Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	222	1181	645	324	1248	576	384	1027	471	278	1532	576		Arrive On Green	0.07	0.33	0.33	0.09	0.35	0.37	0.08	0.29	0.30	0.09	0.30	0.30		Sat Flow, veh/h	1781	3554	1571	1781	3554	1572	1781	3554	1569	1781	5106	1569		Grp Volume(v), veh/h	188	760	152	177	1125	111	271	823	246	208	573	74		Grp Sat Flow(s), veh/h/ln	1781	1777	1571	1781	1777	1572	1781	1777	1569	1781	1702	1569		Q Serve(g_s), s	6.0	16.3	5.7	5.8	27.1	4.3	7.0	19.3	11.7	7.4	8.0	2.8		Cycle Q Clear(g_c), s	6.0	16.3	5.7	5.8	27.1	4.3	7.0	19.3	11.7	7.4	8.0	2.8		Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00	0.0	1.00		Lane Grp Cap(c), veh/h	222	1181	645	324	1248	576	384	1027	471	278	1532	576		V/C Ratio(X)	0.85	0.64	0.24	0.55	0.90	0.19	0.71	0.80	0.52	0.75	0.37	0.13		Avail Cap(c_a), veh/h	222	1181	645	330	1248	576	384	1027	471	278	1532	576		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	23.9	25.5	17.3	19.0	27.7	19.4	24.5	29.6	26.1	22.8	24.8	18.9		Incr Delay (d2), s/veh	25.3	2.7	0.9	1.8	10.7	0.7	5.8	6.6	4.1	10.7	0.7	0.5		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	7.2	11.2	3.7	4.3	18.5	2.9	4.0	13.7	8.2	6.8	5.7	1.9		Unsig. Movement Delay, s/veh			0.1	1.0	10.0	2.0	1.0	10.1	0.2	0.0	0.1	1.0		LnGrp Delay(d),s/veh	49.3	28.2	18.2	20.8	38.4	20.2	30.3	36.2	30.3	33.6	25.5	19.4		LnGrp LOS	D	C	В	C	D	C	C	D	C	C	C	В		Approach Vol, veh/h		1100			1413			1340			855			Approach Delay, s/veh		30.4			34.8			33.9			27.0			Approach LOS		C			C			C			C C														U			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	11.0	32.0	10.0	37.0	12.0	31.0	11.7	35.3						Change Period (Y+Rc), s	4.0	* 5	4.0	* 5.4	4.0	* 5	4.0	* 5.4						Max Green Setting (Gmax), s	7.0	* 27	6.0	* 32	8.0	* 26	8.0	* 30						Max Q Clear Time (g_c+I1), s	9.0	10.0	8.0	29.1	9.4	21.3	7.8	18.3						Green Ext Time (p_c), s	0.0	3.7	0.0	1.8	0.0	2.6	0.0	4.1						Intersection Summary														HCM 6th Ctrl Delay			32.1											HCM 6th LOS			С											Notes													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		۶	→	•	•	•	•	•	†	~	/	ţ	✓		--------------------------------	--------------	-----------	-----------	--------------	---------	--------------	---------	--------------	--------------	-----------	-----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7		7	ሻ		7		ተተተ	7	7	ተተተ			Traffic Volume (vph)	240	210	450	100	0	140	0	1050	100	280	590	0		Future Volume (vph)	240	210	450	100	0	140	0	1050	100	280	590	0		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	4.0	5.5	4.0	4.0		4.0		5.3	4.0	4.0	5.3			Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		0.91	1.00	1.00	0.91			Frpb, ped/bikes	1.00 1.00	1.00	1.00	1.00 0.99		1.00 1.00		1.00 1.00	0.91 1.00	1.00	1.00			Flpb, ped/bikes Frt	1.00	1.00	0.85	1.00		0.85		1.00	0.85	1.00	1.00			FIt Protected	0.95	1.00	1.00	0.95		1.00		1.00	1.00	0.95	1.00			Satd. Flow (prot)	1770	1863	1583	1755		1583		5085	1441	1768	5085			Flt Permitted	0.95	1.00	1.00	0.17		1.00		1.00	1.00	0.15	1.00			Satd. Flow (perm)	1770	1863	1583	308		1583		5085	1441	275	5085			Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Adj. Flow (vph)	247	216	464	103	0.07	144	0.07	1082	103	289	608	0.07		RTOR Reduction (vph)	0	0	195	0	0	61	0	0	77	0	0	0		Lane Group Flow (vph)	247	216	269	103	0	83	0	1082	26	289	608	0		Confl. Peds. (#/hr)			20	20			20		30	30		20		Turn Type	Split	NA	Prot	Perm		pm+ov		NA	Perm	pm+pt	NA			Protected Phases	4	4	4			5		6		5	2			Permitted Phases				3		3			6	2				Actuated Green, G (s)	15.4	15.4	15.4	22.4		32.4		21.8	21.8	37.1	35.8			Effective Green, g (s)	16.9	15.4	16.9	24.0		32.4		21.8	23.1	37.1	35.8			Actuated g/C Ratio	0.19	0.17	0.19	0.27		0.36		0.24	0.26	0.41	0.40			Clearance Time (s)	5.5	5.5	5.5	5.6		4.0		5.3	5.3	4.0	5.3			Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		5.0	5.0	3.0	5.4			Lane Grp Cap (vph)	332	318	297	82		640		1231	369	279	2022			v/s Ratio Prot	0.14	0.12	c0.17			0.01		0.21		c0.12	0.12			v/s Ratio Perm	2 = 1			c0.33		0.04			0.02	c0.31				v/c Ratio	0.74	0.68	0.91	1.26		0.13		0.88	0.07	1.04	0.30			Uniform Delay, d1	34.5	35.0	35.8	33.0		19.3		32.8	25.3	32.7	18.5			Progression Factor	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00			Incremental Delay, d2	8.7	5.7	29.1	183.0		0.1		9.1	0.4	63.5	0.4			Delay (s) Level of Service	43.2 D	40.7 D	64.8 E	216.0 F		19.4 B		41.9 D	25.7 C	96.2 F	18.9 B			Approach Delay (s)	U	53.5	<u> </u>	Г	101.4	Ь		40.5	U	Г	43.8			Approach LOS		D			F			D			D			Intersection Summary														HCM 2000 Control Delay			49.7	H	CM 2000	Level of S	Service		D					HCM 2000 Volume to Capac	city ratio		1.17											Actuated Cycle Length (s)			90.0			t time (s)			20.4					Intersection Capacity Utilizat	ion		70.0%	IC	U Level	of Service			С					Analysis Period (min)			15											c Critical Lane Group															۶	→	•	•	•	•	•	†	<i>></i>	/	↓	4		---------------------------------	--------------	--------------	--------------	--------------	-----------	--------------	------------	--------------	--------------	--------------	--------------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	+	7	ሻ		7		ተተተ	7	ሻ	ተተተ			Traffic Volume (vph)	440	390	510	50	0	230	0	920	130	220	530	0		Future Volume (vph)	440	390	510	50	0	230	0	920	130	220	530	0		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Total Lost time (s)	4.0	5.5	4.0	4.0		4.0		5.3	4.0	4.0	5.3			Lane Util. Factor	1.00	1.00	1.00	1.00		1.00		0.91	1.00	1.00	0.91			Frpb, ped/bikes	1.00	1.00	1.00	1.00		1.00		1.00	0.83	1.00	1.00			Flpb, ped/bikes	1.00	1.00	1.00	0.96		1.00		1.00	1.00	1.00	1.00			Frt Flt Protected	1.00 0.95	1.00 1.00	0.85 1.00	1.00 0.95		0.85 1.00		1.00 1.00	0.85 1.00	1.00 0.95	1.00 1.00			Satd. Flow (prot)	1770	1863	1583	1707		1583		5085	1313	1765	5085			Flt Permitted	0.95	1.00	1.00	0.41		1.00																																																																																																																																																																
1.00	1.00	0.14	1.00			Satd. Flow (perm)	1770	1863	1583	733		1583		5085	1313	264	5085			Peak-hour factor, PHF	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96		Adj. Flow (vph)	458	406	531	52	0.50	240	0.30	958	135	229	552	0.30		RTOR Reduction (vph)	0	0	107	0	0	75	0	0	97	0	0	0		Lane Group Flow (vph)	458	406	424	52	0	165	0	958	38	229	552	0		Confl. Peds. (#/hr)	100	100	45	45			35	000	65	65	002	35		Turn Type	Split	NA	Prot	Perm		pm+ov		NA	Perm	pm+pt	NA			Protected Phases	4	4	4			5		6		5	2			Permitted Phases				3		3			6	2				Actuated Green, G (s)	26.6	26.6	26.6	8.2		18.8		24.2	24.2	38.8	38.8			Effective Green, g (s)	28.1	26.6	28.1	9.8		18.8		24.2	25.5	38.8	38.8			Actuated g/C Ratio	0.31	0.30	0.31	0.11		0.21		0.27	0.28	0.43	0.43			Clearance Time (s)	5.5	5.5	5.5	5.6		4.0		5.3	5.3	4.0	5.3			Vehicle Extension (s)	3.0	3.0	3.0	3.0		3.0		5.0	5.0	3.0	5.4			Lane Grp Cap (vph)	552	550	494	79		330		1367	372	290	2192			v/s Ratio Prot	0.26	0.22	c0.27			0.06		0.19		c0.09	0.11			v/s Ratio Perm				c0.07		0.05			0.03	c0.25				v/c Ratio	0.83	0.74	0.86	0.66		0.50		0.70	0.10	0.79	0.25			Uniform Delay, d1	28.7	28.6	29.1	38.5		31.4		29.6	23.8	18.8	16.3			Progression Factor	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00			Incremental Delay, d2	10.0	5.1	13.9	18.1		1.2		3.0	0.6	13.3	0.3			Delay (s)	38.7	33.7	42.9	56.6		32.6		32.7	24.4	32.1	16.6			Level of Service	D	C	D	E	20.0	С		C	С	С	В			Approach Delay (s) Approach LOS		38.9 D			36.9 D			31.6 C			21.2 C			Intersection Summary		_			_						-			HCM 2000 Control Delay			32.6	Н	CM 2000	Level of S	Service		С					HCM 2000 Volume to Capac	ity ratio		0.86	11	CIVI 2000	20101010	J 51 V 100		<u> </u>					Actuated Cycle Length (s)	nty rullo		90.0	Sı	ım of los	t time (s)			20.4					Intersection Capacity Utilizati	ion		73.7%			of Service			D					Analysis Period (min)			15			2. 23. 7.00								c Critical Lane Group															•	→	•	•	•	•	•	†	*	>	ļ	4		-------------------------------	-------------	----------	-------	------	-----------	-------------	---------	----------	------	-------------	------	-------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	1/1	41111		ሻ	1111	7	ሻ	^	7	1414	414	7		Traffic Volume (vph)	670	1220	20	30	1910	720	30	40	60	300	30	510		Future Volume (vph)	670	1220	20	30	1910	720	30	40	60	300	30	510		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width	10	10	12	10	10	12	12	12	12	12	12	12		Total Lost time (s)	4.0	5.4		4.0	5.4	4.0	4.0	6.2	4.0	4.0	6.2	4.0		Lane Util. Factor	0.97	0.81		1.00	0.86	1.00	1.00	0.95	1.00	0.86	0.86	1.00		Frpb, ped/bikes	1.00	1.00		1.00	1.00	0.97	1.00	1.00	1.00	1.00	1.00	0.99		Flpb, ped/bikes	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Frt	1.00	1.00		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.96	1.00		Satd. Flow (prot)	3204	7022		1652	5981	1533	1770	3539	1583	3044	3086	1573		Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	0.96	1.00		Satd. Flow (perm)	3204	7022		1652	5981	1533	1770	3539	1583	3044	3086	1573		Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97		Adj. Flow (vph)	691	1258	21	31	1969	742	31	41	62	309	31	526		RTOR Reduction (vph)	0	2	0	0	0	52	0	0	58	0	0	70		Lane Group Flow (vph)	691	1277	0	31	1969	690	31	41	4	207	133	456		Confl. Peds. (#/hr)	25		5	5		25	5					5		Turn Type	Prot	NA		Prot	NA	pm+ov	Split	NA	Perm	Split	NA	pm+ov		Protected Phases	5	2		1	6	3	4	4		3	3	5		Permitted Phases						6			4			3		Actuated Green, G (s)	28.6	69.9		3.6	44.9	63.7	5.9	5.9	5.9	18.8	18.8	47.4		Effective Green, g (s)	28.6	69.9		3.6	44.9	68.1	8.1	5.9	8.1	21.0	18.8	47.4		Actuated g/C Ratio	0.24	0.58		0.03	0.37	0.57	0.07	0.05	0.07	0.18	0.16	0.39		Clearance Time (s)	4.0	5.4		4.0	5.4	6.2	6.2	6.2	6.2	6.2	6.2	4.0		Vehicle Extension (s)	3.0	5.5		3.0	5.1	5.0	3.0	3.0	3.0	5.0	5.0	3.0		Lane Grp Cap (vph)	763	4090		49	2237	869	119	174	106	532	483	673		v/s Ratio Prot	c0.22	0.18		0.02	c0.33	c0.14	c0.02	0.01		0.07	0.04	0.16		v/s Ratio Perm						0.31			0.00			0.13		v/c Ratio	0.91	0.31		0.63	0.88	0.79	0.26	0.24	0.04	0.39	0.28	0.68		Uniform Delay, d1	44.4	12.8		57.5	35.0	20.4	53.1	54.9	52.3	43.8	44.6	30.0		Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Incremental Delay, d2	14.2	0.2		23.7	5.4	5.8	1.2	0.7	0.2	1.0	0.7	2.7		Delay (s)	58.6	13.0		81.2	40.4	26.2	54.3	55.6	52.5	44.8	45.2	32.7		Level of Service	Е	В		F	D	С	D	Е	D	D	D	С		Approach Delay (s)		29.0			37.0			53.8			37.5			Approach LOS		С			D			D			D			Intersection Summary														HCM 2000 Control Delay			34.7	Н	CM 2000	Level of	Service		С					HCM 2000 Volume to Capa	acity ratio		0.86											Actuated Cycle Length (s)			120.0	S	um of los	st time (s)			21.8					Intersection Capacity Utiliza	ation		82.0%			of Service	!		E					Analysis Period (min)	· · • · ·		15						_					Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations Total Traffic Volume (vph) 570 1520 30 70 1490 490 20 40 40 520 40 600																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
---		Traffic Volume (vph) 570 1520 30 70 1490 490 20 40 40 520 40 600 Future Volume (vph) 570 1520 30 70 1490 490 20 40 40 520 40 600 Ideal Flow (vphpl) 1900		Traffic Volume (vph) 570 1520 30 70 1490 490 20 40 40 520 40 600 Future Volume (vph) 570 1520 30 70 1490 490 20 40 40 520 40 600 Ideal Flow (vphpl) 1900		Ideal Flow (vphpl) 1900		Lane Width 10 10 12 10 10 12		Total Lost time (s) 4.0 5.4 4.0 5.4 4.0 6.2 4.0 4.0 6.2 4.0 Lane Util. Factor 0.97 0.81 1.00 0.86 1.00 1.00 0.95 1.00 0.86 0.86 1.00 Frpb, ped/bikes 1.00 <t< td=""></t<>		Lane Util. Factor 0.97 0.81 1.00 0.86 1.00 1.00 0.95 1.00 0.86 0.86 1.00 Frpb, ped/bikes 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.76 1.00 1.00 0.99 Flpb, ped/bikes 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00		Frpb, ped/bikes 1.00 1.00 1.00 1.00 0.95 1.00 1.00 0.76 1.00 1.00 0.99 Flpb, ped/bikes 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.95 0.96 1.00 Satd. Flow (prot) 3204 7018 1652 5981 1497 1770 3539 1211 3044 3079 1571 150		Fipb, ped/bikes 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00		Fipb, ped/bikes 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 0.95		Frt 1.00 1.00 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 Flt Protected 0.95 1.00 0.95 1.00 1.00 0.95 0.96 1.00 Satd. Flow (prot) 3204 7018 1652 5981 1497 1770 3539 1211 3044 3079 1571 Flt Permitted 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 0.96 1.00 Satd. Flow (perm) 3204 7018 1652 5981 1497 1770 3539 1211 3044 3079 1571 Peak-hour factor, PHF 0.98 <t< td=""></t<>		Satd. Flow (prot) 3204 7018 1652 5981 1497 1770 3539 1211 3044 3079 1571 Flt Permitted 0.95 1.00 0.95 1.00 1.00 0.95 0.96 1.00 Satd. Flow (perm) 3204 7018 1652 5981 1497 1770 3539 1211 3044 3079 1571 Peak-hour factor, PHF 0.98		Fit Permitted 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 0.95 0.96 1.00 Satd. Flow (perm) 3204 7018 1652 5981 1497 1770 3539 1211 3044 3079 1571 Peak-hour factor, PHF 0.98		Satd. Flow (perm) 3204 7018 1652 5981 1497 1770 3539 1211 3044 3079 1571 Peak-hour factor, PHF 0.98		Peak-hour factor, PHF 0.98		Peak-hour factor, PHF 0.98		Adj. Flow (vph) 582 1551 31 71 1520 500 20 41 41 531 41 612 RTOR Reduction (vph) 0 2 0 0 0 37 0 0 38 0 0 66 Lane Group Flow (vph) 582 1580 0 71 1520 463 20 41 3 356 216 546 Confl. Peds. (#/hr) 50 5 5 50 15 50 50 15 Turn Type Prot NA Prot NA pm+ov Split NA Perm Split NA pm+ov		RTOR Reduction (vph) 0 2 0 0 0 37 0 0 38 0 0 66 Lane Group Flow (vph) 582 1580 0 71 1520 463 20 41 3 356 216 546 Confl. Peds. (#/hr) 50 5 5 50 15 50 50 15 Turn Type Prot NA Prot NA pm+ov Split NA Perm Split NA pm+ov		Lane Group Flow (vph) 582 1580 0 71 1520 463 20 41 3 356 216 546 Confl. Peds. (#/hr) 50 5 5 50 15 50 50 15 Turn Type Prot NA Prot NA pm+ov Split NA Perm Split NA pm+ov		Confl. Peds. (#/hr) 50 5 5 50 15 50 50 15 Turn Type Prot NA Prot NA pm+ov Split NA Perm Split NA pm+ov		, i				Protected Phases 5 2 1 6 3 4 4 3 3 5		Permitted Phases 6 4 3		Actuated Green, G (s) 33.4 66.4 8.3																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
41.3 59.1 5.7 5.7 17.8 17.8 51.2		Effective Green, g (s) 33.4 66.4 8.3 41.3 63.5 7.9 5.7 7.9 20.0 17.8 51.2		Actuated g/C Ratio 0.28 0.55 0.07 0.34 0.53 0.07 0.05 0.07 0.17 0.15 0.43		Clearance Time (s) 4.0 5.4 4.0 5.4 6.2 6.2 6.2 6.2 6.2 4.0		Vehicle Extension (s) 3.0 5.5 3.0 5.1 5.0 3.0 3.0 5.0 5.0 3.0		Lane Grp Cap (vph) 891 3883 114 2058 792 116 168 79 507 456 722		v/s Ratio Prot 0.18 0.23 0.04 c0.25 0.10 0.01 c0.01 0.12 0.07 c0.21		v/s Ratio Perm 0.21 0.00 0.14		v/c Ratio 0.65 0.41 0.62 0.74 0.58 0.17 0.24 0.03 0.70 0.47 0.76		Uniform Delay, d1 38.2 15.4 54.3 34.6 19.3 53.0 55.1 52.5 47.2 46.8 29.1		Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		Incremental Delay, d2 1.7 0.3 10.1 2.4 1.7 0.7 0.8 0.2 5.5 1.6 4.5		Delay (s) 39.9 15.8 64.5 37.0 21.0 53.7 55.8 52.7 52.7 48.4 33.7		Level of Service D B E D C D E D D C		Approach Delay (s) 22.3 34.1 54.1 42.1		Approach LOS C C D D		Intersection Summary		HCM 2000 Control Delay 31.6 HCM 2000 Level of Service C		HCM 2000 Volume to Capacity ratio 0.75		Actuated Cycle Length (s) 120.0 Sum of lost time (s) 21.8		Intersection Capacity Utilization 77.5% ICU Level of Service D		Analysis Period (min) 15			۶	→	•	•	•	•	1	†	~	/	↓	✓		------------------------------	------	----------	-------	-------	-------------	-------	-------	------------	-------	----------	----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	1111	7	7	4†††		ሻሻ	∱ β		ሻሻ	^	7		Traffic Volume (veh/h)	140	1370	410	210	2220	380	690	960	120	170	490	260		Future Volume (veh/h)	140	1370	410	210	2220	380	690	960	120	170	490	260		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	161	1575	471	241	2552	437	793	1103	129	195	563	184		Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.87		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	375	2871	707	184	1910	320	797	988	115	259	563	585		Arrive On Green	0.21	0.45	0.45	0.10	0.34	0.34	0.23	0.31	0.31	0.07	0.16	0.16		Sat Flow, veh/h	1781	6434	1585	1781	5591	936	3456	3205	374	3456	3554	1585		Grp Volume(v), veh/h	161	1575	471	241	2194	795	793	611	621	195	563	184		Grp Sat Flow(s),veh/h/ln	1781	1609	1585	1781	1609	1702	1728	1777	1803	1728	1777	1585		Q Serve(g_s), s	9.4	21.5	18.2	12.4	41.0	41.0	27.5	37.0	37.0	6.6	19.0	0.0		Cycle Q Clear(g_c), s	9.4	21.5	18.2	12.4	41.0	41.0	27.5	37.0	37.0	6.6	19.0	0.0		Prop In Lane	1.00		1.00	1.00		0.55	1.00		0.21	1.00		1.00		Lane Grp Cap(c), veh/h	375	2871	707	184	1649	581	797	548	556	259	563	585		V/C Ratio(X)	0.43	0.55	0.67	1.31	1.33	1.37	0.99	1.11	1.12	0.75	1.00	0.31		Avail Cap(c_a), veh/h	375	2871	707	184	1649	581	797	548	556	259	563	585		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	41.1	24.4	11.0	53.8	39.5	39.5	46.1	41.5	41.5	54.4	50.5	27.0		Incr Delay (d2), s/veh	8.0	0.8	4.9	172.6	153.2	175.7	30.5	73.9	74.7	10.6	38.1	0.3		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	7.5	12.8	11.0	22.6	58.3	67.1	21.2	37.9	38.6	5.8	16.7	6.7		Unsig. Movement Delay, s/veh														LnGrp Delay(d),s/veh	41.9	25.1	15.9	226.4	192.7	215.2	76.5	115.4	116.2	65.0	88.6	27.4		LnGrp LOS	D	С	В	F	F	F	Е	F	F	Е	F	C		Approach Vol, veh/h		2207			3230			2025			942			Approach Delay, s/veh		24.4			200.8			100.4			71.7			Approach LOS		С			F			F			Е			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	18.0	59.8	34.2	25.0	31.5	46.3	15.7	43.5						Change Period (Y+Rc), s	5.6	* 5.8	* 6.5	6.0	5.8	* 5.3	* 6.7	* 6.5						Max Green Setting (Gmax), s	12.4	* 38	* 27	19.0	9.2	* 41	* 9	* 37						Max Q Clear Time (g_c+l1), s	14.4	23.5	29.5	21.0	11.4	43.0	8.6	39.0						Green Ext Time (p_c), s	0.0	10.4	0.0	0.0	0.0	0.0	0.0	0.0						Intersection Summary														HCM 6th Ctrl Delay			115.8											HCM 6th LOS			F										^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		۶	→	•	•	—	•	•	†	_	-	ţ	4		---	-------------	--------------	-------------	-------------	--------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	1111	7	ሻ	411 1		1,4	∱ ĵ≽		1,4	^	7		Traffic Volume (veh/h)	260	2270	610	240	1570	250	670	1030	160	230	820	190		Future Volume (veh/h)	260	2270	610	240	1570	250	670	1030	160	230	820	190		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00	4.00	1.00	1.00	4.00	1.00	1.00	4.00	1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach	4070	No	4070	4070	No	4070	4070	No	4070	4070	No	4070		Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	274	2389	642	253	1653	263	705	1084	157	242	863	111		Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95		Percent Heavy Veh, %	2 696	2015	2 940	2 208	2 1821	2 290	2 665	994	2 144	2 337	2 811	979		Cap, veh/h Arrive On Green	0.39	3815 0.59	0.59	0.12	0.32	0.31	0.19	0.32	0.30	0.10	0.23	0.23			1781	6434	1585	1781	5638	897	3456	3116	450	3456	3554	1585		Sat Flow, veh/h														Grp Volume(v), veh/h	274	2389	642	253	1415	501	705	617	624	242	863	111		Grp Sat Flow(s), veh/h/ln	1781	1609	1585	1781	1609	1709	1728	1777	1789	1728	1777	1585		Q Serve(g_s), s	13.3	28.9	31.9	14.0	33.7	33.7	23.1	38.3	38.3	8.2	27.4	0.0		Cycle Q Clear(g_c), s	13.3	28.9	31.9	14.0	33.7	33.7	23.1	38.3	38.3	8.2	27.4	0.0		Prop In Lane	1.00	2015	1.00 940	1.00	1550	0.52	1.00	F67	0.25	1.00	011	1.00		Lane Grp Cap(c), veh/h	696 0.39	3815	0.68	208	1559	552	665	567 1.09	571	337 0.72	811	979		V/C Ratio(X)	696	0.63 3815	940	1.22 208	0.91 1568	0.91 555	1.06 665	567	1.09	337	1.06 811	0.11 979		Avail Cap(c_a), veh/h HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	571 1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Uniform Delay (d), s/veh	26.3	15.8	15.3	53.0	38.9	39.2	48.4	40.8	41.1	52.6	46.3	9.4		Incr Delay (d2), s/veh	0.4	0.8	4.0	133.4	9.3	21.2	51.8	64.1	65.2	6.3	49.9	0.1		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	9.5	15.4	17.0	21.6	20.5	23.9	21.4	36.6	37.1	6.8	25.1	2.1		Unsig. Movement Delay, s/veh		13.4	17.0	21.0	20.0	20.0	21.7	30.0	57.1	0.0	20.1	۷.۱		LnGrp Delay(d),s/veh	26.7	16.6	19.4	186.4	48.2	60.5	100.3	104.9	106.3	58.8	96.2	9.5		LnGrp LOS	C	В	В	F	70.2 D	E	F	F	F	50.0 E	50.2 F	3.5 A		Approach Vol, veh/h		3305			2169			1946		<u> </u>	1216			Approach Delay, s/veh		18.0			67.1			103.7			80.8			Approach LOS		В			67.1			F			00.0 F																	Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	18.0	76.5	27.1	31.4	51.7	42.8	15.7	42.8						Change Period (Y+Rc), s	5.6	* 5.8	* 6.5	6.0	5.8	* 5.3	* 6.7	* 6.5						Max Green Setting (Gmax), s	12.4	* 39	* 20	25.4	13.2	* 38	* 9	* 36						Max Q Clear Time (g_c+I1), s	16.0	33.9	25.1	29.4	15.3	35.7	10.2	40.3						Green Ext Time (p_c), s	0.0	4.6	0.0	0.0	0.0	1.7	0.0	0.0						Intersection Summary														HCM 6th Ctrl Delay			58.5											HCM 6th LOS			E																																																																																																																																																																																																																																																																																																																																																																																																																		
									^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. User approved changes to right turn type.		۶	→	•	•	←	•	•	†	~	>	ļ	4		------------------------------	------	-----------	-----------	------	----------	-------	----------	----------	-------	-------------	-----------	------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	ተተተ	7	ሻ	ተተተ	7	ሻሻ	^	77.77	ሻሻ	^	7		Traffic Volume (veh/h)	110	650	430	530	1360	960	390	910	220	330	470	290		Future Volume (veh/h)	110	650	430	530	1360	960	390	910	220	330	470	290		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	112	663	371	541	1388	819	398	929	191	337	480	223		Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	176	1292	546	568	2340	726	374	948	1386	346	918	449		Arrive On Green	0.04	0.25	0.24	0.25	0.46	0.46	0.11	0.27	0.25	0.10	0.26	0.24		Sat Flow, veh/h	1781	5106	1585	1781	5106	1585	3456	3554	2790	3456	3554	1585		Grp Volume(v), veh/h	112	663	371	541	1388	819	398	929	191	337	480	223		Grp Sat Flow(s), veh/h/ln	1781	1702	1585	1781	1702	1585	1728	1777	1395	1728	1777	1585		Q Serve(g_s), s	5.0	13.4	24.0	27.0	24.3	55.0	13.0	31.1	4.4	11.7	13.9	14.1		Cycle Q Clear(g_c), s	5.0	13.4	24.0	27.0	24.3	55.0	13.0	31.1	4.4	11.7	13.9	14.1		Prop In Lane	1.00	10.1	1.00	1.00	21.0	1.00	1.00	0111	1.00	1.00	10.0	1.00		Lane Grp Cap(c), veh/h	176	1292	546	568	2340	726	374	948	1386	346	918	449		V/C Ratio(X)	0.64	0.51	0.68	0.95	0.59	1.13	1.06	0.98	0.14	0.98	0.52	0.50		Avail Cap(c_a), veh/h	176	1292	546	603	2340	726	374	948	1386	346	918	449		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.91	0.91	0.91	1.00	1.00	1.00		Uniform Delay (d), s/veh	34.4	38.5	33.6	25.8	24.2	32.5	53.5	43.7	16.3	53.9	38.2	35.9		Incr Delay (d2), s/veh	7.4	1.5	6.7	24.7	1.1	74.2	62.1	23.1	0.0	41.6	0.5	0.9		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	5.2	9.6	15.1	21.2	14.8	48.5	13.7	22.6	2.5	11.3	10.0	9.3		Unsig. Movement Delay, s/veh		0.0	10.1	21.2	11.0	10.0	10.7	22.0	2.0	11.0	10.0	0.0		LnGrp Delay(d),s/veh	41.8	39.9	40.3	50.5	25.3	106.7	115.6	66.8	16.3	95.5	38.7	36.7		LnGrp LOS	D	D	70.0 D	D	C	F	F	E	В	50.0 F	D	D		Approach Vol, veh/h		1146			2748		<u>'</u>	1518		<u>'</u>	1040			Approach Delay, s/veh		40.2			54.5			73.2			56.7			Approach LOS		40.2 D			D4.5			7 5.Z			50.7 E																	Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	33.6	34.4	17.0	35.0	9.0	59.0	16.0	36.0						Change Period (Y+Rc), s	4.0	6.0	4.0	* 6	4.0	6.0	4.0	* 6						Max Green Setting (Gmax), s	32.0	26.0	13.0	* 29	5.0	53.0	12.0	* 30						Max Q Clear Time (g_c+l1), s	29.0	26.0	15.0	16.1	7.0	57.0	13.7	33.1						Green Ext Time (p_c), s	0.6	0.0	0.0	3.1	0.0	0.0	0.0	0.0						Intersection Summary														HCM 6th Ctrl Delay			56.7											HCM 6th LOS			E											Notos													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		۶	→	•	•	←	•	4	†	/	>	ļ	4		------------------------------	------	------------------	-----------	------------	------------	------	-----------	-----------	-----------	-------------	-----------	-----------		Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ች	^ ^	7	ች	^ ^	7	ሻሻ	^	77	ሻሻ	^	7		Traffic Volume (veh/h)	240	1740	720	220	1140	330	220	580	670	790	960	400		Future Volume (veh/h)	240	1740	720	220	1140	330	220	580	670	790	960	400		Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00		Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Work Zone On Approach		No			No			No			No			Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870		Adj Flow Rate, veh/h	255	1851	710	234	1213	96	234	617	610	840	1021	386		Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94		Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2		Cap, veh/h	294	1765	659	194	1567	487	300	845	826	720	1277	723		Arrive On Green	0.11	0.35	0.33	0.08	0.31	0.31	0.09	0.24	0.22	0.21	0.36	0.34		Sat Flow, veh/h	1781	5106	1585	1781	5106	1585	3456	3554	2790	3456	3554	1585		Grp Volume(v), veh/h	255	1851	710	234	1213	96	234	617	610	840	1021	386		Grp Sat Flow(s), veh/h/ln	1781	1702	1585	1781	1702	1585	1728	1777	1395	1728	1777	1585		Q Serve(g_s), s	11.6	41.5	39.5	9.0	25.9	5.4	8.0	19.2	23.6	25.0	31.0	21.0		Cycle Q Clear(g_c), s	11.6	41.5	39.5	9.0	25.9	5.4	8.0	19.2	23.6	25.0	31.0	21.0		Prop In Lane	1.00	71.0	1.00	1.00	20.0	1.00	1.00	15.2	1.00	1.00	31.0	1.00		Lane Grp Cap(c), veh/h	294	1765	659	194	1567	487	300	845	826	720	1277	723		V/C Ratio(X)	0.87	1.05	1.08	1.21	0.77	0.20	0.78	0.73	0.74	1.17	0.80	0.53		Avail Cap(c_a), veh/h	299	1765	659	194	1567	487	518	859	837	720	1277	723		HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	0.83	0.83	0.83	1.00	1.00	1.00		Uniform Delay (d), s/veh	28.6	39.3	35.1	32.9	37.8	30.7	53.7	42.2	38.1	47.5	34.6	23.4		Incr Delay (d2), s/veh	22.5	35.5	57.7	132.2	3.8	0.9	3.7	2.6	2.9	89.7	3.7	0.8		Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		%ile BackOfQ(95%),veh/ln	10.9	31.4	39.5	17.5	16.6	3.8	6.4	12.9	12.5	28.9	19.6	12.2		Unsig. Movement Delay, s/veh		J1. 4	00.0	17.5	10.0	5.0	0.4	12.5	12.0	20.5	13.0	12.2		LnGrp Delay(d),s/veh	51.1	74.8	92.8	165.0	41.6	31.6	57.4	44.8	40.9	137.2	38.3	24.2		LnGrp LOS	J1.1	74.0 F	92.0 F	103.0 F	41.0 D	C C	57.4 E	44.0 D	40.9 D	137.Z F	30.3 D	24.2 C			D		Г	Г			<u> </u>		U	Г				Approach Vol, veh/h		2816			1543			1461			2247			Approach LOC		77.2			59.7			45.2 D			72.8 F			Approach LOS		Е			Ε			U			E			Timer - Assigned Phs	1	2	3	4	5	6	7	8						Phs Duration (G+Y+Rc), s	13.0	45.5	14.4	47.1	17.6	40.8	29.0	32.5						Change Period (Y+Rc), s	4.0	6.0	4.0	* 6	4.0	6.0	4.0	* 6						Max Green Setting (Gmax), s	9.0	39.0	18.0	* 34	14.0	34.0	25.0	* 27						Max Q Clear Time (g_c+l1), s	11.0	43.5	10.0	33.0	13.6	27.9	27.0	25.6						Green Ext Time (p_c), s	0.0	0.0	0.5	0.7	0.0	3.9	0.0	0.9						Intersection Summary														HCM 6th Ctrl Delay			66.8											HCM 6th LOS			E											Notes													^{*} HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.		•	•	†	<i>></i>	>	↓				-----------------------------------	---------	-----------	-----------	-------------	-------------	------------------	-----	--		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations		77	ተተኈ		ሻሻ	^				Traffic Volume (vph)	0	210	1280	50	620	810				Future Volume (vph)	0	210	1280	50	620	810				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)		4.0	4.0		4.0	4.0				Lane Util. Factor		0.88	0.91		0.97	0.95				Frpb, ped/bikes		1.00	1.00		1.00	1.00				Flpb, ped/bikes		1.00	1.00		1.00	1.00				Frt		0.85	0.99		1.00	1.00				Flt Protected		1.00	1.00		0.95	1.00				Satd. Flow																																																																																																																																																																																																																																															
(prot)		2787	5053		3433	3539				Flt Permitted		1.00	1.00		0.95	1.00				Satd. Flow (perm)		2787	5053		3433	3539				Peak-hour factor, PHF	1.00	1.00	1.00	1.00	1.00	1.00				Adj. Flow (vph)	0	210	1280	50	620	810														RTOR Reduction (vph)	0	86 124	9 1321	0	0 620	0 810				Lane Group Flow (vph)	U	124	1321			810				Confl. Peds. (#/hr)				10	10					Turn Type		Perm	NA		Prot	NA				Protected Phases			2		8					Permitted Phases		8				28				Actuated Green, G (s)		8.8	26.0		8.8	45.0				Effective Green, g (s)		9.7	27.3		9.7	41.4				Actuated g/C Ratio		0.22	0.61		0.22	0.92				Clearance Time (s)		4.9	5.3		4.9					Vehicle Extension (s)		3.0	3.8		3.0					Lane Grp Cap (vph)		600	3065		740	3255				v/s Ratio Prot			c0.26		c0.18					v/s Ratio Perm		0.04				0.23				v/c Ratio		0.21	0.43		0.84	0.25				Uniform Delay, d1		14.5	4.7		16.9	0.2				Progression Factor		1.00	1.00		1.00	1.00				Incremental Delay, d2		0.2	0.4		8.2	0.0				Delay (s)		14.7	5.2		25.1	0.2				Level of Service		В	A		C	A				Approach Delay (s)	14.7		5.2			11.0				Approach LOS	В		A			В				Intersection Summary										HCM 2000 Control Delay			8.7	Н	CM 2000	Level of Service	Α			HCM 2000 Volume to Capacity	y ratio		0.54							Actuated Cycle Length (s)			45.0	Sı	um of lost	time (s)	8.0			Intersection Capacity Utilization	n		50.2%			of Service	Α			Analysis Period (min)										7 that you i office (filling)			15								•	•	†	/	>	↓				--------------------------------	------------	-------	-----------------	----------	-------------	------------------	-----	---		Movement	WBL	WBR	NBT	NBR	SBL	SBT				Lane Configurations		77	ተ ተኈ		ሻሻ	† †				Traffic Volume (vph)	0	620	830	100	340	1560				Future Volume (vph)	0	620	830	100	340	1560				Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900				Total Lost time (s)		4.0	4.0		4.0	4.0				Lane Util. Factor		0.88	0.91		0.97	0.95				Frpb, ped/bikes		1.00	1.00		1.00	1.00				Flpb, ped/bikes		1.00	1.00		1.00	1.00				Frt		0.85	0.98		1.00	1.00				Flt Protected		1.00	1.00		0.95	1.00				Satd. Flow (prot)		2787	4992		3433	3539				FIt Permitted		1.00	1.00		0.95	1.00				Satd. Flow (perm)		2787	4992		3433	3539				Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92				Adj. Flow (vph)	0	674	902	109	370	1696				RTOR Reduction (vph)	0	198	33	0	0	0				Lane Group Flow (vph)	0	476	978	0	370	1696				Confl. Peds. (#/hr)				15	15					Turn Type		Perm	NA		Prot	NA				Protected Phases			2		8					Permitted Phases		8				28				Actuated Green, G (s)		8.8	26.0		8.8	45.0				Effective Green, g (s)		9.7	27.3		9.7	41.4				Actuated g/C Ratio		0.22	0.61		0.22	0.92				Clearance Time (s)		4.9	5.3		4.9					Vehicle Extension (s)		3.0	3.8		3.0					Lane Grp Cap (vph)		600	3028		740	3255				v/s Ratio Prot			0.20		0.11					v/s Ratio Perm		c0.17				c0.48				v/c Ratio		0.79	0.32		0.50	0.52				Uniform Delay, d1		16.7	4.3		15.5	0.3				Progression Factor		1.00	1.00		1.00	1.00				Incremental Delay, d2		7.1	0.3		0.5	0.2				Delay (s)		23.8	4.6		16.1	0.4				Level of Service		С	Α		В	Α				Approach Delay (s)	23.8		4.6			3.2				Approach LOS	С		Α			Α				Intersection Summary										HCM 2000 Control Delay			7.3	H	CM 2000	Level of Service	А	1		HCM 2000 Volume to Capac	city ratio		0.61							Actuated Cycle Length (s)			45.0	Sı	um of lost	time (s)	8.0			Intersection Capacity Utilizat	tion		50.0%			of Service	А			Analysis Period (min)			15							c Critical Lane Group									# Appendix F: 2028 Conditions Synchro Queue Reports		۶	→	•	•	←	•	4	†	/	>	ļ	4		-------------------------	------	----------	------	------	----------	------	------	----------	------	-------------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	1/1/	^	7	ሻ	^	7	ሻ	ተተተ	7	ሻ	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	278		145	245		140	225		100	205		200		Storage Lanes	2		1	1		1	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			35			35			Link Distance (ft)		588			684			825			550			Travel Time (s)		10.0			11.7			16.1			10.7			Lane Group Flow (vph)	227	588	258	186	825	412	113	1928	72	206	1474	175		v/c Ratio	0.88	0.71	0.50	0.65	0.93	0.80	0.58	1.00	0.09	0.97	0.75	0.24		Control Delay	87.9	47.2	14.2	55.4	62.2	38.4	31.8	58.6	0.2	85.4	34.6	2.7		Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	87.9	47.2	14.2	55.4	62.2	38.4	31.8	58.6	0.2	85.4	34.6	2.7		Queue Length 50th (ft)	91	216	40	122	330	191	44	~544	0	110	356	0		Queue Length 95th (ft)	#164	280	118	#196	#452	#350	95	#667	0	#266	415	29		Internal Link Dist (ft)		508			604			745			470			Turn Bay Length (ft)	278		145	245		140	225		100	205		200		Base Capacity (vph)	257	878	538	288	884	515	196	1923	821	212	1972	739		Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	0.88	0.67	0.48	0.65	0.93	0.80	0.58	1.00	0.09	0.97	0.75	0.24	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		٠	→	\rightarrow	•	←	•	4	†	/	\	ļ	4		-------------------------	------	----------	---------------	------	----------	------	------	----------	------	----------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	77	^	7	ሻ	^	7	ሻ	ተተተ	7	ሻ	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	278		145	245		140	225		100	205		200		Storage Lanes	2		1	1		1	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			35			35			Link Distance (ft)		588			684			825			550			Travel Time (s)		10.0			11.7			16.1			10.7			Lane Group Flow (vph)	206	918	165	113	794	206	227	1711	113	381	1804	433		v/c Ratio	0.80	1.03	0.33	0.58	0.90	0.41	0.98	1.07	0.16	1.18	0.97	0.58		Control Delay	77.5	82.6	9.8	59.4	57.7	14.4	87.5	81.8	1.4	140.4	51.6	15.0		Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	77.5	82.6	9.8	59.4	57.7	14.4	87.5	81.8	1.4	140.4	51.6	15.0		Queue Length 50th (ft)	82	~401	12	71	314	36	126	~536	0	~303	497	102		Queue Length 95th (ft)	#143	#531	68	123	#424	104	#291	#633	11	#500	#610	208		Internal Link Dist (ft)		508			604			745			470			Turn Bay Length (ft)	278		145	245		140	225		100	205		200		Base Capacity (vph)	257	890	506	194	884	506	231	1606	706	323	1868	745		Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	0.80	1.03	0.33	0.58	0.90	0.41	0.98	1.07	0.16	1.18	0.97	0.58	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	→	•	•	←	•	4	†	/	>	ļ	4		-------------------------	------	----------	------	-------	------------	------	-------	----------	----------	-------------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane																																																																													
Configurations	ሻ	^	7	77	↑ ↑		ሻ	ተተተ	7	ሻ	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	70		0	200		0	160		100	230		100		Storage Lanes	1		1	2		0	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			35			35			Link Distance (ft)		597			453			968			825			Travel Time (s)		10.2			7.7			18.9			16.1			Lane Group Flow (vph)	173	224	102	327	347	0	316	1918	143	41	1776	82		v/c Ratio	0.66	0.41	0.25	1.43	0.63		1.46	0.68	0.14	0.22	0.75	0.09		Control Delay	39.2	36.1	10.1	252.1	38.4		235.8	24.4	10.7	10.9	22.5	2.4		Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	39.2	36.1	10.1	252.1	38.4		235.8	24.4	10.7	10.9	22.5	2.4		Queue Length 50th (ft)	77	61	12	~130	92		~192	392	44	8	291	0		Queue Length 95th (ft)	125	91	45	#215	130		m#217	m423	m54	23	382	18		Internal Link Dist (ft)		517			373			888			745			Turn Bay Length (ft)	70			200			160		100	230		100		Base Capacity (vph)	261	1022	412	228	1010		216	2810	998	183	2380	885		Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0		Reduced v/c Ratio	0.66	0.22	0.25	1.43	0.34		1.46	0.68	0.14	0.22	0.75	0.09	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.		ᄼ	→	\rightarrow	•	←	•	4	†	/	>	ļ	4		-------------------------	------	----------	---------------	-------	------------	------	-------	----------	------	-------------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	^	7	ሻሻ	∱ }		7	ተተተ	7	*	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	70		0	200		0	160		100	230		100		Storage Lanes	1		1	2		0	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		35			40			35			35			Link Distance (ft)		597			453			968			825			Travel Time (s)		11.6			7.7			18.9			16.1			Lane Group Flow (vph)	168	516	126	284	305	0	242	1705	326	84	1937	105		v/c Ratio	0.47	0.69	0.28	1.06	0.39		1.12	0.72	0.37	0.46	0.90	0.13		Control Delay	25.3	37.5	11.0	114.7	26.8		100.4	29.0	19.5	19.4	32.6	4.3		Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	25.3	37.5	11.0	114.7	26.8		100.4	29.0	19.5	19.4	32.6	4.3		Queue Length 50th (ft)	67	143	21	~92	67		~135	365	151	21	367	5		Queue Length 95th (ft)	104	182	54	#172	97		m#170	m420	m182	48	#540	32		Internal Link Dist (ft)		517			373			888			745			Turn Bay Length (ft)	70			200			160		100	230		100		Base Capacity (vph)	359	1022	453	267	1046		217	2362	893	183	2148	810		Starvation Cap Reductn	0	0	0	0	0		0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0		0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0		0	0	0	0	0	0		Reduced v/c Ratio	0.47	0.50	0.28	1.06	0.29		1.12	0.72	0.37	0.46	0.90	0.13	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.		۶	→	•	•	←	•	4	†	/	>	ļ	4		-------------------------	------	------------	------	------	------------	------	------	----------	------	-------------	-------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ }		ሻ	∱ }		ሻ	ተተተ	7	ሻ	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	90		0	175		0	240		100	140		60		Storage Lanes	1		0	1		0	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		30			40			35			35			Link Distance (ft)		592			452			615			968			Travel Time (s)		13.5			7.7			12.0			18.9			Lane Group Flow (vph)	10	474	0	216	1093	0	186	2072	31	165	1938	31		v/c Ratio	0.06	0.54		0.75	1.03		1.00	0.95	0.04	0.89	0.89	0.04		Control Delay	16.6	28.6		38.9	65.9		87.1	37.5	0.3	47.8	17.4	1.0		Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	16.6	28.6		38.9	65.9		87.1	37.5	0.3	47.8	17.4	1.0		Queue Length 50th (ft)	3	105		80	~336		~65	~474	0	30	376	0		Queue Length 95th (ft)	13	153		#152	#465		#199	#569	2	m#86	m#410	m1		Internal Link Dist (ft)		512			372			535			888			Turn Bay Length (ft)	90			175			240		100	140		60		Base Capacity (vph)	179	1010		289	1061		186	2181	820	186	2181	803		Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0		Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0		Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0		Reduced v/c Ratio	0.06	0.47		0.75	1.03		1.00	0.95	0.04	0.89	0.89	0.04	Area Type: Other Queue shown is maximum after two cycles. Volume exceeds capacity, queue is theoretically infinite. ^{# 95}th percentile volume exceeds capacity, queue may be longer. m Volume for 95th percentile queue is metered by upstream signal.		۶	→	•	•	←	•	•	†	/	>	ļ	4		-------------------------	------	------------	------	------	------------	------	------	----------	------	-------------	-------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	↑ ↑		ሻ	↑ ↑		ሻ	ተተተ	7	ሻ	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	90		0	175		0	240		100	140		60		Storage Lanes	1		0	1		0	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			35			35			Link Distance (ft)		592			452			615			968			Travel Time (s)		10.1			7.7			12.0			18.9			Lane Group Flow (vph)	102	459	0	214	684	0	153	1949	51	276	2041	71		v/c Ratio	0.55	0.56		0.83	0.74		0.83	0.90	0.07	1.14	0.88	0.08		Control Delay	31.2	29.7		51.3	30.6		51.7	33.1	2.0	111.2	14.9	1.3		Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	31.2	29.7		51.3	30.6		51.7	33.1	2.0	111.2	14.9	1.3		Queue Length 50th (ft)	39	108		88	158		39	376	0	~126	405	4		Queue Length 95th (ft)	69	147		#162	208		#155	#540	12	m#172	m#534	m4		Internal Link Dist (ft)		512			372			535			888			Turn Bay Length (ft)	90			175			240		100	140		60		Base Capacity (vph)	185	1010		258	1039		184	2156	783	243	2325	840		Starvation Cap Reductn	0	0		0	0		0	0	0	0	0	0		Spillback Cap Reductn	0	0		0	0		0	0	0	0	0	0		Storage Cap Reductn	0	0		0	0		0	0	0	0	0	0		Reduced v/c Ratio	0.55	0.45		0.83	0.66		0.83	0.90	0.07	1.14	0.88	0.08	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal.		•	•	4	†	ļ	4		-------------------------	------	-------	------	----------	------	------		Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		Lane																																																																																																																																																																													
Configurations		יויוי	ነነነነ		1111	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%			0%	0%			Storage Length (ft)	0	0	0			0		Storage Lanes	0	4	4			1		Taper Length (ft)	25		25					Right Turn on Red		Yes				Yes		Link Speed (mph)	40			35	35			Link Distance (ft)	251			195	286			Travel Time (s)	4.3			3.8	5.6			Lane Group Flow (vph)	0	2677	1948	0	2344	10		v/c Ratio		1.24	0.57		1.12	0.01		Control Delay		134.6	14.9		91.1	0.0		Queue Delay		0.0	0.0		0.0	0.0		Total Delay		134.6	14.9		91.1	0.0		Queue Length 50th (ft)		~745	192		~450	0		Queue Length 95th (ft)		#846	224		#526	0		Internal Link Dist (ft)	171			115	206			Turn Bay Length (ft)								Base Capacity (vph)		2161	3435		2093	1583		Starvation Cap Reductn		0	0		0	0		Spillback Cap Reductn		0	0		0	0		Storage Cap Reductn		0	0		0	0		Reduced v/c Ratio		1.24	0.57		1.12	0.01	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		۶	•	1	†	↓	4		-------------------------	------	-------	------	----------	----------	------		Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		Lane Configurations		יויוי	ነነነነ		1111	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%			0%	0%			Storage Length (ft)	0	0	0			0		Storage Lanes	0	4	4			1		Taper Length (ft)	25		25					Right Turn on Red		Yes				Yes		Link Speed (mph)	40			35	35			Link Distance (ft)	251			195	286			Travel Time (s)	4.3			3.8	5.6			Lane Group Flow (vph)	0	2827	1765	0	2388	20		v/c Ratio		1.31	0.52		1.15	0.01		Control Delay		167.7	14.3		102.9	0.0		Queue Delay		0.0	0.0		0.0	0.0		Total Delay		167.7	14.3		102.9	0.0		Queue Length 50th (ft)		~817	168		~468	0		Queue Length 95th (ft)		#917	198		#544	0		Internal Link Dist (ft)	171			115	206			Turn Bay Length (ft)								Base Capacity (vph)		2152	3420		2079	1583		Starvation Cap Reductn		0	0		0	0		Spillback Cap Reductn		0	0		0	0		Storage Cap Reductn		0	0		0	0		Reduced v/c Ratio		1.31	0.52		1.15	0.01	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	•	†	/	-	↓		-------------------------	------	------	----------	------	------	----------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations		7	1111	7	ሻሻ	1111		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	0	0		0	300			Storage Lanes	0	1		1	2			Taper Length (ft)	25				25			Right Turn on Red		Yes		Yes				Link Speed (mph)	30		35			35		Link Distance (ft)	410		338			520		Travel Time (s)	9.3		6.6			10.1		Lane Group Flow (vph)	0	469	3990	271	125	2750		v/c Ratio		1.00	0.98	0.26	0.12	0.43		Control Delay		84.6	32.4	3.0	31.7	0.2		Queue Delay		0.0	0.0	0.0	0.0	0.0		Total Delay		84.6	32.4	3.0	31.7	0.2		Queue Length 50th (ft)		363	812	17	36	0		Queue Length 95th (ft)		#585	#903	50	60	0		Internal Link Dist (ft)	330		258			440		Turn Bay Length (ft)					300			Base Capacity (vph)		469	4058	1034	1001	6408		Starvation Cap Reductn		0	0	0	0	0		Spillback Cap Reductn		0	0	0	0	0		Storage Cap Reductn		0	0	0	0	0		Reduced v/c Ratio		1.00	0.98	0.26	0.12	0.43	^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		•	•	†	1	-	↓		-------------------------	------	------	----------	------	------	----------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations		7	1111	7	1/1	1111		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	0	0		0	300			Storage Lanes	0	1		1	2			Taper Length (ft)	25				25			Right Turn on Red		Yes		Yes				Link Speed (mph)	30		35			35		Link Distance (ft)	410		338			520		Travel Time (s)	9.3		6.6			10.1		Lane Group Flow (vph)	0	567	3866	309	62	2732		v/c Ratio		1.03	1.03	0.33	0.05	0.43		Control Delay		85.8	49.9	4.7	26.7	0.2		Queue Delay		0.0	0.0	0.0	0.0	0.0		Total Delay		85.8	49.9	4.7	26.7	0.2		Queue Length 50th (ft)		~470	~935	30	16	0		Queue Length 95th (ft)		#691	#990	74	32	0		Internal Link Dist (ft)	330		258			440		Turn Bay Length (ft)					300			Base Capacity (vph)		550	3738	942	1172	6408		Starvation Cap Reductn		0	0	0	0	0		Spillback Cap Reductn		0	0	0	0	0		Storage Cap Reductn		0	0	0	0	0		Reduced v/c Ratio		1.03	1.03	0.33	0.05	0.43	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	•	†	~	-	ļ		-------------------------	------	------	----------	------	------	------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations	1/2	77	4111			1111		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	200	230		175	0			Storage Lanes	2	0		0	0			Taper Length (ft)	25				25			Right Turn on Red		No		Yes				Link Speed (mph)	35		35			35		Link Distance (ft)	620		550			520		Travel Time (s)	12.1		10.7			10.1		Lane Group Flow (vph)	417	563	3948	0	0	2750		v/c Ratio	0.45	0.82	0.97			0.67		Control Delay	37.3	51.1	30.2			15.5		Queue Delay	0.0	0.0	0.0			0.0		Total Delay	37.3	51.1	30.2			15.5		Queue Length 50th (ft)	138	231	787			366		Queue Length 95th (ft)	172	284	#1035			472		Internal Link Dist (ft)	540		470			440		Turn Bay Length (ft)	200	230						Base Capacity (vph)	1118	831	4073			4088		Starvation Cap Reductn	0	0	0			0		Spillback Cap Reductn	0	0	0			0		Storage Cap Reductn	0	0	0			0		Reduced v/c Ratio	0.37	0.68	0.97			0.67	^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		•	•	†	~	-	ļ		-------------------------	------	------	----------	------	------	------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations	1/1	77	ttt⊅			1111		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	200	230		175	0			Storage Lanes	2	0		0	0			Taper Length (ft)	25				25			Right Turn on Red		No		Yes				Link Speed (mph)	35		35			35		Link Distance (ft)	620		550			520		Travel Time (s)	12.1		10.7			10.1		Lane Group Flow (vph)	615	333	3906	0	0	2760		v/c Ratio	0.77	0.57	0.90			0.64		Control Delay	49.7	44.0	21.0			12.6		Queue Delay	0.0	0.0	0.0			0.0		Total Delay	49.7	44.0	21.0			12.6		Queue Length 50th (ft)	231	130	666			322		Queue Length 95th (ft)	275	170	#894			425		Internal Link Dist (ft)	540		470			440		Turn Bay Length (ft)	200	230						Base Capacity (vph)	1118	823	4322			4326		Starvation Cap Reductn	0	0	0			0		Spillback Cap Reductn	0	0	0			0		Storage Cap Reductn	0	0	0			0		Reduced v/c Ratio	0.55	0.40	0.90			0.64	^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		€	•	†	/	-	↓		-------------------------	------	-------	----------	------	------	----------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations		777	ተተተ			^		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	0	0		0	0			Storage Lanes	0	3		0	0			Taper Length (ft)	25				25			Right Turn on Red		No		Yes				Link Speed (mph)	50		35			35		Link Distance (ft)	820		237			230		Travel Time (s)	11.2		4.6			4.5		Lane Group Flow (vph)	0	2747	2516	0	0	3463		v/c Ratio		1.40	1.31			0.98		Control Delay		204.9	170.4			12.7		Queue Delay		0.0	0.0			0.0		Total Delay		204.9	170.4			12.7		Queue Length 50th (ft)		~925	~680			0		Queue Length 95th (ft)		#1038	#776			#81																																																																																																																																																																																																																																													
Internal Link Dist (ft)	740		157			150		Turn Bay Length (ft)								Base Capacity (vph)		1965	1921			3539		Starvation Cap Reductn		0	0			0		Spillback Cap Reductn		0	0			0		Storage Cap Reductn		0	0			0		Reduced v/c Ratio		1.40	1.31			0.98	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	•	†	/	-	ļ		-------------------------	------	-------	----------	------	------	----------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations		777	ተተተ			^		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	0	0		0	0			Storage Lanes	0	3		0	0			Taper Length (ft)	25				25			Right Turn on Red		No		Yes				Link Speed (mph)	50		35			40		Link Distance (ft)	820		237			230		Travel Time (s)	11.2		4.6			3.9		Lane Group Flow (vph)	0	2436	2957	0	0	3202		v/c Ratio		1.41	1.34			0.90		Control Delay		213.5	182.7			4.8		Queue Delay		0.0	0.0			0.0		Total Delay		213.5	182.7			4.8		Queue Length 50th (ft)		~825	~812			0		Queue Length 95th (ft)		#939	#905			0		Internal Link Dist (ft)	740		157			150		Turn Bay Length (ft)								Base Capacity (vph)		1724	2203			3539		Starvation Cap Reductn		0	0			0		Spillback Cap Reductn		0	0			0		Storage Cap Reductn		0	0			0		Reduced v/c Ratio		1.41	1.34			0.90	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer.		۶	→	\rightarrow	•	←	•	1	†	/	-	ţ	4		-------------------------	-------	----------	---------------	------	----------	------	------	----------	------	------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	16	ተተተ	7	ሻሻ	ተተተ	7	7	ተተተ	77	ሻሻ	4111			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	240		120	270		350	240		70	220		80		Storage Lanes	2		1	2		1	1		1	2		0		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			35			35			Link Distance (ft)		538			1042			676			375			Travel Time (s)		9.2			17.8			13.2			7.3			Lane Group Flow (vph)	272	391	239	228	217	435	217	1891	652	652	2924	0		v/c Ratio	1.02	0.55	0.57	0.75	0.28	0.63	0.83	0.98	0.50	0.89	1.03			Control Delay	103.1	38.6	11.6	56.4	34.2	23.0	66.4	45.7	8.3	51.3	50.1			Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			Total Delay	103.1	38.6	11.6	56.4	34.2	23.0	66.4	45.7	8.3	51.3	50.1			Queue Length 50th (ft)	~82	76	6	66	40	165	122	383	48	187	~522			Queue Length 95th (ft)	#164	105	70	#119	61	269	#269	#502	98	#309	#598			Internal Link Dist (ft)		458			962			596			295			Turn Bay Length (ft)	240		120	270		350	240		70	220				Base Capacity (vph)	267	847	453	305	904	686	261	1922	1317	735	2846			Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0			Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0			Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0			Reduced v/c Ratio	1.02	0.46	0.53	0.75	0.24	0.63	0.83	0.98	0.50	0.89	1.03		Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	→	\rightarrow	•	←	•	4	†	/	-	ļ	4		-------------------------	------	----------	---------------	-------	----------	------	------	----------	------	------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻሻ	ተተተ	7	77	ተተተ	7	ሻ	ተተተ	77	1,4	4111			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	240		120	270		350	240		70	220		80		Storage Lanes	2		1	2		1	1		1	2		0		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			35			35			Link Distance (ft)		538			1042			676			385			Travel Time (s)		9.2			17.8			13.2			7.5			Lane Group Flow (vph)	229	354	177	354	406	625	302	2042	1000	583	2552	0		v/c Ratio	0.75	0.50	0.48	1.16	0.57	0.96	0.84	1.03	0.74	0.83	1.03			Control Delay	56.6	37.9	10.1	140.9	39.1	52.4	57.1	57.5	16.1	47.2	53.3			Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			Total Delay	56.6	37.9	10.1	140.9	39.1	52.4	57.1	57.5	16.1	47.2	53.3			Queue Length 50th (ft)	67	69	0	~124	80	313	166	~461	148	164	~454			Queue Length 95th (ft)	#119	94	54	#210	107	#543	#344	#557	234	#286	#532			Internal Link Dist (ft)		458			962			596			305			Turn Bay Length (ft)	240		120	270		350	240		70	220				Base Capacity (vph)	305	904	421	305	904	652	361	1977	1359	701	2487			Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0			Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0			Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0			Reduced v/c Ratio	0.75	0.39	0.42	1.16	0.45	0.96	0.84	1.03	0.74	0.83	1.03		Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	→	•	•	←	•	•	†	/	>	ļ	4		-------------------------	------	------------	------	------	------------	------	------	----------	------	-------------	------------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	۲	∱ }		¥	↑ ↑		Ĭ		7	*	∱ }			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	140		0	300		0	227		0	140		0		Storage Lanes	1		0	2		0	1		1	1		0		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			30			30			Link Distance (ft)		979			902			867			372			Travel Time (s)		16.7			15.4			19.7			8.5			Lane Group Flow (vph)	52	979	0	31	1382	0	381	21	103	41	20	0		v/c Ratio	0.40	0.57		0.10	0.65		0.97	0.06	0.26	0.33	0.07			Control Delay	31.8	18.1		10.4	15.2		75.1	22.6	11.7	44.5	25.3			Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0			Total Delay	31.8	18.1		10.4	15.2		75.1	22.6	11.7	44.5	25.3			Queue Length 50th (ft)	21	212		8	282		216	11	28	22	2			Queue Length 95th (ft)	#75	296		22	396		#394	22	38	53	13			Internal Link Dist (ft)		899			822			787			292			Turn Bay Length (ft)	140			300			227			140				Base Capacity (vph)	131	1714		301	2110		393	952	396	334	800			Starvation Cap Reductn	0	0		0	0		0	0	0	0	0			Spillback Cap Reductn	0	0		0	0		0	0	0	0	0			Storage Cap Reductn	0	0		0	0		0	0	0	0	0			Reduced v/c Ratio	0.40	0.57		0.10	0.65		0.97	0.02	0.26	0.12	0.03		^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		۶	→	•	•	•	•	4	†	~	-	ļ	4		-------------------------	------	------------	------	------	------------	------	-------	----------	------	------	------------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	∱ }		ሻ	∱ }		ሻ	^	7	ሻ	∱ }			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	140		0	300		0	227		0	140		0		Storage Lanes	2		0	1		0	1		1	1		0		Taper Length (ft)	25			25																																																																																																																																									
25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			40			30			30			Link Distance (ft)		979			902			867			372			Travel Time (s)		16.7			15.4			19.7			8.5			Lane Group Flow (vph)	52	721	0	62	1062	0	711	21	247	124	72	0		v/c Ratio	0.45	0.65		0.22	0.69		1.45	0.05	0.44	0.61	0.14			Control Delay	44.2	23.8		18.4	23.9		241.2	17.2	11.1	47.8	22.6			Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0			Total Delay	44.2	23.8		18.4	23.9		241.2	17.2	11.1	47.8	22.6			Queue Length 50th (ft)	26	145		20	246		~556	11	70	67	12			Queue Length 95th (ft)	#79	212		49	359		#769	16	50	116	29			Internal Link Dist (ft)		899			822			787			292			Turn Bay Length (ft)	140			300			227			140				Base Capacity (vph)	115	1114		283	1549		491	1055	558	332	796			Starvation Cap Reductn	0	0		0	0		0	0	0	0	0			Spillback Cap Reductn	0	0		0	0		0	0	0	0	0			Storage Cap Reductn	0	0		0	0		0	0	0	0	0			Reduced v/c Ratio	0.45	0.65		0.22	0.69		1.45	0.02	0.44	0.37	0.09		Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Area Type: Other		•	→	←	•	-	1		-------------------------	------	----------	--	------	------	-------		Lane Group	EBL	EBT	WBT	WBR	SBL	SBR		Lane Configurations	1/4	1111	######################################			77.77		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	10	10	10	12	12	12		Grade (%)		0%	0%		0%			Storage Length (ft)	188			0	0	0		Storage Lanes	2			0	0	2		Taper Length (ft)	25				25			Right Turn on Red				Yes		Yes		Link Speed (mph)		35	35		30			Link Distance (ft)		607	472		678			Travel Time (s)		11.8	9.2		15.4			Lane Group Flow (vph)	714	2143	1551	0	0	439		v/c Ratio	0.76	0.36	0.42			0.53		Control Delay	35.7	0.2	10.1			28.6		Queue Delay	0.0	0.0	0.0			0.0		Total Delay	35.7	0.2	10.1			28.6		Queue Length 50th (ft)	197	0	122			117		Queue Length 95th (ft)	260	0	189			167		Internal Link Dist (ft)		527	392		598			Turn Bay Length (ft)	188							Base Capacity (vph)	1852	5981	3679			1619		Starvation Cap Reductn	0	0	0			0		Spillback Cap Reductn	0	0	0			0		Storage Cap Reductn	0	0	0			0		Reduced v/c Ratio	0.39	0.36	0.42			0.27		Intersection Summary							Area Type: Other		•	→	\rightarrow	•	←	•	•	†	/	>	ļ	4		-------------------------	------	----------	---------------	------	----------	------	------	----------	------	-------------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	^	7	ሻ	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	195		0	250		150	130		0	270		150		Storage Lanes	1		1	1		1	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			35			35			35			Link Distance (ft)		703			815			468			490			Travel Time (s)		12.0			15.9			9.1			9.5			Lane Group Flow (vph)	163	429	184	224	1276	276	214	1112	133	133	622	133		v/c Ratio	0.88	0.41	0.27	0.49	1.00	0.42	0.62	0.98	0.22	0.72	0.42	0.21		Control Delay	62.4	27.2	7.2	18.0	54.1	11.2	25.8	52.7	2.5	41.8	27.0	4.7		Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	62.4	27.2	7.2	18.0	54.1	11.2	25.8	52.7	2.5	41.8	27.0	4.7		Queue Length 50th (ft)	51	104	21	73	375	45	76	326	0	45	104	2		Queue Length 95th (ft)	#154	147	60	121	#529	109	126	#467	21	#108	138	36		Internal Link Dist (ft)		623			735			388			410			Turn Bay Length (ft)	195			250		150	130			270		150		Base Capacity (vph)	185	1045	688	474	1281	662	344	1140	615	184	1469	633		Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	0.88	0.41	0.27	0.47	1.00	0.42	0.62	0.98	0.22	0.72	0.42	0.21	^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4		-------------------------	------	----------	---------------	------	----------	------	------	----------	------	-------------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	^	7	ሻ	^	7	ሻ	^	7	ሻ	ተተተ	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	195		0	250		150	130		0	270		150		Storage Lanes	1		1	1		1	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		40			35			35			35			Link Distance (ft)		703			815			468			490			Travel Time (s)		12.0			15.9			9.1			9.5			Lane Group Flow (vph)	188	719	240	177	1052	219	271	979	406	198	708	125		v/c Ratio	0.92	0.64	0.34	0.63	0.90	0.34	0.78	0.83	0.62	0.98	0.46	0.20		Control Delay	67.0	29.4	11.3	26.4	41.2	7.7	34.7	35.1	16.8	80.0	26.8	7.9		Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	67.0	29.4	11.3	26.4	41.2	7.7	34.7	35.1	16.8	80.0	26.8	7.9		Queue Length 50th (ft)	63	182	53	59	297	19	96	267	93	67	119	16		Queue Length 95th (ft)	#182	243	102	#102	#420	70	#163	347	192	#198	155	49		Internal Link Dist (ft)		623			735			388			410			Turn Bay Length (ft)	195			250		150	130			270		150		Base Capacity (vph)	204	1124	715	282	1163	643	346	1179	660	203	1525	635		Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	0.92	0.64	0.34	0.63	0.90	0.34	0.78	0.83	0.62	0.98	0.46	0.20	^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		۶	→	•	•	←	•	4	†	/	\	ļ	4		-------------------------	------	----------	------	-------	----------	------	------	----------	------	----------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	1	7	ሻ		7		ተተተ	7	ሻ	ተተተ			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	205		0	243		0	0		100	175		0		Storage Lanes	1		1	1		1	0		1	1		0		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		30			30			35			35			Link Distance (ft)		807			562			431			476			Travel Time (s)		18.3			12.8			8.4			9.3			Lane Group Flow (vph)	155	216	464	103	0	144	0	1196	103	289	722	0		v/c Ratio	0.41	0.54	0.99	1.27		0.22		0.97	0.22	1.04	0.36			Control Delay	34.3	37.3	63.7	223.9		7.0		53.5	2.2	100.8	19.6			Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0			Total Delay	34.3	37.3	63.7	223.9		7.0		53.5	2.2	100.8	19.6			Queue Length 50th (ft)	76	110	180	~74		12		247	0	~128	102			Queue Length 95th (ft)	135	182	#382	#176		50		#342	11	#287	134			Internal Link Dist (ft)		727			482			351			396			Turn Bay Length (ft)	205			243					100	175				Base Capacity (vph)	379	399	469	81		665		1237	473	278	2028			Starvation Cap Reductn	0	0	0	0		0		0	0	0	0			Spillback Cap Reductn	0	0	0	0		0		0	0	0	0			Storage Cap Reductn	0	0	0	0		0		0	0	0	0			Reduced v/c																																																																						
Ratio	0.41	0.54	0.99	1.27		0.22		0.97	0.22	1.04	0.36		Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		۶	→	•	•	←	•	•	†	/	>	ļ	4		-------------------------	------	----------	------	------	----------	------	------	----------	------	-------------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	¥		7	ň		7		ተተተ	7	ň	ተተተ			Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	205		0	243		0	0		100	175		0		Storage Lanes	1		1	1		1	0		1	1		0		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		30			30			35			35			Link Distance (ft)		807			562			431			476			Travel Time (s)		18.3			12.8			8.4			9.3			Lane Group Flow (vph)	396	406	531	52	0	240	0	1031	135	229	875	0		v/c Ratio	0.72	0.74	0.90	0.54		0.59		0.69	0.27	0.82	0.38			Control Delay	35.7	37.7	41.4	59.5		15.7		32.5	5.5	43.5	18.4			Queue Delay	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0			Total Delay	35.7	37.7	41.4	59.5		15.7		32.5	5.5	43.5	18.4			Queue Length 50th (ft)	195	204	214	28		34		203	0	85	128			Queue Length 95th (ft)	299	310	#408	#78		69		254	37	#206	163			Internal Link Dist (ft)		727			482			351			396			Turn Bay Length (ft)	205			243					100	175				Base Capacity (vph)	570	569	607	97		410		1500	507	283	2279			Starvation Cap Reductn	0	0	0	0		0		0	0	0	0			Spillback Cap Reductn	0	0	0	0		0		0	0	0	0			Storage Cap Reductn	0	0	0	0		0		0	0	0	0			Reduced v/c Ratio	0.69	0.71	0.87	0.54		0.59		0.69	0.27	0.81	0.38		^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		٠	→	*	•	←	•	•	†	~	/	ļ	4		-------------------------	------	----------	------	------	----------	------	------	----------	------	----------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7/7	41111		ሻ	1111	7	ሻ	^	7	ሻሻ	414	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	10	10	12	10	10	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	300		1000	280		200	120		120	290		260		Storage Lanes	2		1	1		1	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		35			35			35			35			Link Distance (ft)		1173			806			632			681			Travel Time (s)		22.9			15.7			12.3			13.3			Lane Group Flow (vph)	691	1207	0	31	1835	794	31	41	62	214	137	546		v/c Ratio	1.00	0.30		0.38	0.84	0.87	0.30	0.20	0.25	0.35	0.22	0.73		Control Delay	80.3	15.1		69.2	40.1	26.4	61.5	55.7	2.4	43.4	41.5	26.7		Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	80.3	15.1		69.2	40.1	26.4	61.5	55.7	2.4	43.4	41.5	26.7		Queue Length 50th (ft)	277	132		24	390	273	23	16	0	83	52	258		Queue Length 95th (ft)	#405	155		57	444	#560	56	35	0	126	85	392		Internal Link Dist (ft)		1093			726			552			601			Turn Bay Length (ft)	300			280		200	120		120	290		260		Base Capacity (vph)	694	3963		82	2180	908	115	230	256	603	611	745		Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	1.00	0.30		0.38	0.84	0.87	0.27	0.18	0.24	0.35	0.22	0.73	^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		•	-	\rightarrow	•	←	*	^	†	/	-	ţ	4		-------------------------	------	-------	---------------	------	----------	------	----------	----------	----------	------	------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	77	41111		ħ	1111	7	ň	^	7	77	4₽	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	10	10	12	10	10	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	300		1000	280		200	120		120	290		260		Storage Lanes	2		1	1		1	1		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		35			35			35			35			Link Distance (ft)		1173			806			632			681			Travel Time (s)		22.9			15.7			12.3			13.3			Lane Group Flow (vph)	612	1531	0	71	1337	510	20	41	41	424	250	612		v/c Ratio	0.70	0.39		0.54	0.65	0.59	0.15	0.20	0.15	0.76	0.49	0.79		Control Delay	43.8	16.9		68.3	36.5	12.4	54.2	56.1	1.2	56.3	49.3	27.8		Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	43.8	16.9		68.3	36.5	12.4	54.2	56.1	1.2	56.3	49.3	27.8		Queue Length 50th (ft)	213	177		53	269	139	15	16	0	183	103	290		Queue Length 95th (ft)	277	207		103	316	216	40	35	0	248	151	438		Internal Link Dist (ft)		1093			726			552			601			Turn Bay Length (ft)	300			280		200	120		120	290		260		Base Capacity (vph)	934	3890		151	2057	865	147	230	282	558	507	793		Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	0.66	0.39		0.47	0.65	0.59	0.14	0.18	0.15	0.76	0.49	0.77	Area Type:		٠	→	*	•	•	•	4	†	/	\	ļ	1		-------------------------	-------	----------	------	-------	-------	------	------	----------	----------	----------	----------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	1111	7	ሻ	4111		1/4	ħβ		14.14	^	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	10	10	10	10	11	12	12	12	10	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	235		0	141		0	332		0	144		197		Storage Lanes	1		1	1		0	2		0	2		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			No			No			Yes			Yes		Link Speed (mph)		35			35			40			40			Link Distance (ft)		442			865			583			502			Travel Time (s)		8.6			16.9			9.9			8.6			Lane Group Flow (vph)	115	1471	471	241	2874	0	805	1276	0	195	563	287		v/c Ratio	1.03	0.80	1.04	1.31	1.36		1.06	1.18		0.76	0.98	0.53		Control Delay	147.3	42.0	92.7	214.7	196.6		93.0	128.1		73.6	83.0	23.3		Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0		Total Delay	147.3	42.0	92.7	214.7	196.6		93.0	128.1		73.6	83.0	23.3		Queue Length 50th (ft)	~93	303	~392	~240	~850		~351	~623		77	231	100		Queue Length 95th (ft)	#206	334	#568	#385	#872		#449	#721		#124	#329	178		Internal Link Dist (ft)		362			785			503			422			Turn Bay Length (ft)	235			141			332			144		197		Base Capacity (vph)	112	1844	455	184	2118		763	1081		257	575	538		Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	0		Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	0		Storage Cap Reductn	0	0	0	0	0		0	0		0	0	0		Reduced v/c Ratio	1.03	0.80	1.04	1.31	1.36		1.06	1.18		0.76	0.98	0.53	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	→	•	•	•	•	4	†	~	\	ļ	4		-------------------------	-------	----------	-------	-------	------	------	-------	------------	------	----------	----------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	1111	7	7	4111		1,1	↑ ↑		7/7	^																																																																																								
7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	10	10	10	10	11	12	12	12	10	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	235		0	141		0	332		0	144		197		Storage Lanes	1		1	1		0	2		0	2		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			No			No			Yes			Yes		Link Speed (mph)		35			35			40			40			Link Distance (ft)		442			865			583			502			Travel Time (s)		8.6			16.9			9.9			8.6			Lane Group Flow (vph)	242	2411	600	253	1758	0	695	1252	0	242	895	179		v/c Ratio	1.00	1.24	1.25	1.23	0.96		1.28	1.12		0.72	0.98	0.23		Control Delay	108.2	148.6	164.4	181.7	54.8		180.7	104.5		65.8	69.6	7.2		Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0		Total Delay	108.2	148.6	164.4	181.7	54.8		180.7	104.5		65.8	69.6	7.2		Queue Length 50th (ft)	190	~674	~580	~241	388		~351	~585		95	363	21		Queue Length 95th (ft)	#358	#747	#804	#407	#471		#472	#725		#146	#502	65		Internal Link Dist (ft)		362			785			503			422			Turn Bay Length (ft)	235			141			332			144		197		Base Capacity (vph)	243	1943	480	206	1832		543	1117		334	914	768		Starvation Cap Reductn	0	0	0	0	0		0	0		0	0	0		Spillback Cap Reductn	0	0	0	0	0		0	0		0	0	0		Storage Cap Reductn	0	0	0	0	0		0	0		0	0	0		Reduced v/c Ratio	1.00	1.24	1.25	1.23	0.96		1.28	1.12		0.72	0.98	0.23	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		۶	→	•	•	←	•	•	†	/	>	ļ	4		-------------------------	------	----------	------	------	----------	-------	-------	----------	------	-------------	----------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	ሻ	ተተተ	7	ሻ	ተተተ	7	77	^	77	ሻሻ	^	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	225		0	175		0	160		80	405		120		Storage Lanes	1		1	1		1	2		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		35			35			40			40			Link Distance (ft)		1163			923			812			788			Travel Time (s)		22.7			18.0			13.8			13.4			Lane Group Flow (vph)	112	673	367	541	1276	1082	398	929	224	337	469	296		v/c Ratio	0.67	0.58	0.54	0.95	0.57	1.24	1.07	1.13	0.15	0.85	0.55	0.50		Control Delay	41.6	43.9	24.2	51.9	26.1	139.9	117.8	114.3	9.7	72.5	42.8	24.0		Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	41.6	43.9	24.2	51.9	26.1	139.9	117.8	114.3	9.7	72.5	42.8	24.0		Queue Length 50th (ft)	42	173	161	307	264	~901	~176	~437	32	134	167	119		Queue Length 95th (ft)	#91	217	261	#525	310	#1160	#277	#569	53	#209	223	206		Internal Link Dist (ft)		1083			843			732			708			Turn Bay Length (ft)	225			175			160		80	405		120		Base Capacity (vph)	168	1165	674	586	2252	875	371	825	1561	400	855	592		Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	0.67	0.58	0.54	0.92	0.57	1.24	1.07	1.13	0.14	0.84	0.55	0.50	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		ᄼ	-	\rightarrow	•	•	•		†	1	-	ļ	4		-------------------------	------	----------	---------------	------	------	------	------	----------	------	-------	----------	------		Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		Lane Configurations	7	^	7	7	ተተተ	7	ሻሻ	^	77	1/1	^	7		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12		Grade (%)		0%			0%			0%			0%			Storage Length (ft)	225		0	175		0	160		80	405		120		Storage Lanes	1		1	1		1	2		1	1		1		Taper Length (ft)	25			25			25			25				Right Turn on Red			Yes			Yes			Yes			Yes		Link Speed (mph)		35			35			40			40			Link Distance (ft)		1163			923			812			784			Travel Time (s)		22.7			18.0			13.8			13.4			Lane Group Flow (vph)	255	1883	755	234	1106	362	234	617	713	787	1011	415		v/c Ratio	0.85	1.06	0.89	1.03	0.71	0.49	0.54	0.77	0.67	1.15	0.95	0.54		Control Delay	54.1	77.8	36.7	98.7	40.7	6.0	53.7	50.6	29.5	125.8	59.7	21.5		Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		Total Delay	54.1	77.8	36.7	98.7	40.7	6.0	53.7	50.6	29.5	125.8	59.7	21.5		Queue Length 50th (ft)	141	~611	453	~150	291	0	87	232	210	~368	403	182		Queue Length 95th (ft)	#269	#708	#728	#316	346	74	128	299	284	#492	#539	276		Internal Link Dist (ft)		1083			843			732			704			Turn Bay Length (ft)	225			175			160		80	405		120		Base Capacity (vph)	327	1775	876	228	1562	737	486	855	1066	686	1062	798		Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0		Reduced v/c Ratio	0.78	1.06	0.86	1.03	0.71	0.49	0.48	0.72	0.67	1.15	0.95	0.52	Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer.		•	*	†	~	-	↓		-------------------------	------	------	-------------	------	------	----------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations		77	↑ ↑↑		ሻሻ	^		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	0	0		0	450			Storage Lanes	0	2		0	2			Taper Length (ft)	25				25			Right Turn on Red		Yes		Yes				Link Speed (mph)	30		30			40		Link Distance (ft)	300		312			812		Travel Time (s)	6.8		7.1			13.8		Lane Group Flow (vph)	0	210	1310	0	600	750		v/c Ratio		0.34	0.45		0.89	0.21		Control Delay		10.6	5.9		37.9	0.1		Queue Delay		0.0	0.0		0.0	0.0		Total Delay		10.6	5.9		37.9	0.1		Queue Length 50th (ft)		13	57		78	0		Queue Length 95th (ft)		37	80		#155	0		Internal Link Dist (ft)	220		232			732		Turn Bay Length (ft)					450			Base Capacity (vph)		624	2925		671	3539		Starvation Cap Reductn		0	0		0	0		Spillback Cap Reductn		0	0		0	0		Storage Cap Reductn		0	0		0	0		Reduced v/c Ratio		0.34	0.45		0.89	0.21	Area Type: Other ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.		•	•	†	~	>	↓		-------------------------	------	------	-----------------	------	-------------	----------		Lane Group	WBL	WBR	NBT	NBR	SBL	SBT		Lane Configurations		77	ተተ _ጉ		1,1	^		Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		Lane Width (ft)	12	12	12	12	12	12		Grade (%)	0%		0%			0%		Storage Length (ft)	0	0		0	450			Storage Lanes	0	2		0	2			Taper Length (ft)	25				25			Right Turn on Red		Yes		Yes				Link Speed (mph)	30		30			40		Link Distance (ft)	300		312			812		Travel Time (s)	6.8		7.1			13.8		Lane Group Flow (vph)	0	674	1011	0	380	1663		v/c Ratio		0.84	0.33		0.51	0.47		Control Delay		23.3	4.3		18.4	0.5		Queue Delay		0.0	0.0		0.0	0.0		Total Delay		23.3	4.3		18.4	0.5		Queue Length 50th (ft)		57	34		44	0		Queue Length 95th (ft)		#145	49		76	0		Internal Link Dist (ft)	220		232			732		Turn Bay Length (ft)					450			Base Capacity (vph)		799	3062		740	3539		Starvation Cap Reductn		0	0		0	0		Spillback Cap Reductn		0	0		0	0		Storage Cap Reductn		0	0		0	0		Reduced v/c Ratio		0.84	0.33		0.51	0.47	Area Type: ^{# 95}th percentile volume exceeds																																																																																																																																																										
capacity, queue may be longer. Queue shown is maximum after two cycles. | | ᄼ | → | \rightarrow | • | ← | • | 4 | † | / | > | ļ | 4 | |-------------------------|------|----------|---------------|------|----------|------|------|----------|------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 1/1/ | ^ | 7 | ሻ | ^ | 7 | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 278 | | 145 | 245 | | 140 | 225 | | 100 | 205 | | 200 | | Storage Lanes | 2 | | 1 | 1 | | 1 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 35 | | | 35 | | | Link Distance (ft) | | 588 | | | 684 | | | 825 | | | 550 | | | Travel Time (s) | | 10.0 | | | 11.7 | | | 16.1 | | | 10.7 | | | Lane Group Flow (vph) | 227 | 588 | 258 | 186 | 825 | 412 | 113 | 1948 | 72 | 206 | 1526 | 175 | | v/c Ratio | 0.88 | 0.71 | 0.50 | 0.65 | 0.93 | 0.80 | 0.58 | 1.01 | 0.09 | 0.97 | 0.77 | 0.24 | | Control Delay | 87.9 | 47.2 | 14.4 | 55.4 | 62.2 | 38.4 | 31.8 | 61.0 | 0.2 | 85.4 | 35.5 | 2.7 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 87.9 | 47.2 | 14.4 | 55.4 | 62.2 | 38.4 | 31.8 | 61.0 | 0.2 | 85.4 | 35.5 | 2.7 | | Queue Length 50th (ft) | 91 | 216 | 40 | 122 | 330 | 191 | 44 | ~562 | 0 | 110 | 374 | 0 | | Queue Length 95th (ft) | #164 | 280 | 119 | #196 | #452 | #350 | 95 | #678 | 0 | #266 | 434 | 29 | | Internal Link Dist (ft) | | 508 | | | 604 | | | 745 | | | 470 | | | Turn Bay Length (ft) | 278 | | 145 | 245 | | 140 | 225 | | 100 | 205 | | 200 | | Base Capacity (vph) | 257 | 878 | 537 | 288 | 884 | 515 | 196 | 1923 | 821 | 212 | 1972 | 739 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.88 | 0.67 | 0.48 | 0.65 | 0.93 | 0.80 | 0.58 | 1.01 | 0.09 | 0.97 | 0.77 | 0.24 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | ٠ | → | \rightarrow | • | ← | • | 4 | † | / | \ | ļ | 4 | |-------------------------|------|----------|---------------|------|----------|------|------|----------|------|----------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 77 | ^ | 7 | ሻ | ^ | 7 | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 278 | | 145 | 245 | | 140 | 225 | | 100 | 205 | | 200 | | Storage Lanes | 2 | | 1 | 1 | | 1 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 30 | | | 30 | | | Link Distance (ft) | | 588 | | | 684 | | | 825 | | | 550 | | | Travel Time (s) | | 10.0 | | | 11.7 | | | 18.8 | | | 12.5 | | | Lane Group Flow (vph) | 206 | 918 | 165 | 113 | 794 | 206 | 227 | 1619 | 113 | 381 | 1918 | 433 | | v/c Ratio | 0.80 | 1.03 | 0.30 | 0.58 | 0.90 | 0.38 | 1.01 | 1.06 | 0.16 | 1.09 | 1.02 | 0.58 | | Control Delay | 77.5 | 82.6 | 3.6 | 59.4 | 57.7 | 7.0 | 95.2 | 81.0 | 0.5 | 108.8 | 62.8 | 14.9 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 77.5 | 82.6 | 3.6 | 59.4 | 57.7 | 7.0 | 95.2 | 81.0 | 0.5 | 108.8 | 62.8 | 14.9 | | Queue Length 50th (ft) | 82 | ~401 | 0 | 71 | 314 | 1 | ~128 | ~504 | 0 | ~282 | ~559 | 102 | | Queue Length 95th (ft) | #143 | #531 | 30 | 123 | #424 | 60 | #296 | #601 | 0 | #479 | #672 | 207 | | Internal Link Dist (ft) | | 508 | | | 604 | | | 745 | | | 470 | | | Turn Bay Length (ft) | 278 | | 145 | 245 | | 140 | 225 | | 100 | 205 | | 200 | | Base Capacity (vph) | 257 | 890 | 550 | 194 | 884 | 549 | 225 | 1529 | 721 | 349 | 1885 | 749 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.80 | 1.03 | 0.30 | 0.58 | 0.90 | 0.38 | 1.01 | 1.06 | 0.16 | 1.09 | 1.02 | 0.58 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | ۶ | → | \rightarrow | • | ← | • | 4 | † | _ | - | ↓ | 4 | |-------------------------|------|----------|---------------|-------|------|------|-------|----------|------|------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ^ | 7 | 77 | ħβ | | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 70 | | 0 | 200 | | 0 | 160 | | 100 | 230 | | 100 | | Storage Lanes | 1 | | 1 | 2 | | 0 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 35 | | | 35 | | | Link Distance (ft) | | 597 | | | 453 | | | 968 | | | 825 | | | Travel Time (s) | | 10.2 | | | 7.7 | | | 18.9 | | | 16.1 | | | Lane Group Flow (vph) | 173 | 224 | 102 | 327 | 347 | 0 | 316 | 1929 | 143 | 41 | 1827 | 82 | | v/c Ratio | 0.73 | 0.36 | 0.21 | 1.43 | 0.56 | | 1.22 | 0.67 | 0.14 | 0.22 | 0.75 | 0.09 | | Control Delay | 44.7 | 33.6 | 9.1 | 252.1 | 34.7 | | 132.3 | 23.9 | 10.1 | 10.9 | 22.0 | 2.4 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 44.7 | 33.6 | 9.1 | 252.1 | 34.7 | | 132.3 | 23.9 | 10.1 | 10.9 | 22.0 | 2.4 | | Queue Length 50th (ft) | 77 | 59 | 11 | ~130 | 89 | | ~165 | 395 | 41 | 8 | 297 | 0 | | Queue Length 95th (ft) | #132 | 88 | 43 | #215 | 126 | | m#197 | m435 | m52 | 23 | 389 | 18 | | Internal Link Dist (ft) | | 517 | | | 373 | | | 888 | | | 745 | | | Turn Bay Length (ft) | 70 | | | 200 | | | 160 | | 100 | 230 | | 100 | | Base Capacity (vph) | 238 | 1101 | 478 | 228 | 1086 | | 258 | 2866 | 998 | 183 | 2437 | 885 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.73 | 0.20 | 0.21 | 1.43 | 0.32 | | 1.22 | 0.67 | 0.14 | 0.22 | 0.75 | 0.09 | Area Type: Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | • | → | \rightarrow | • | ← | • | 4 | † | / | > | ļ | 4 | |-------------------------|------|----------|---------------|-------|------------|------|-------|----------|------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | , j | ^ | 7 | ሻሻ | ∱ } | | * | ተተተ | 7 | * | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 70 | | 0 | 200 | | 0 | 160 | | 100 | 230 | | 100 | | Storage Lanes | 1 | | 1 | 2 | | 0 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 35 | | | 35 | | | Link Distance (ft) | | 597 | | | 453 | | | 968 | | | 825 | | | Travel Time (s) | | 10.2 | | | 7.7 | | | 18.9 | | | 16.1 | | | Lane Group Flow (vph) | 168 | 516 | 126 | 326 | 305 | 0 | 242 | 1611 | 326 | 84 | 2053 | 105 | | v/c Ratio | 0.50 | 0.64 | 0.25 | 1.22 | 0.36 | | 1.12 | 0.66 | 0.36 | 0.46 | 0.92 | 0.13 | | Control Delay | 26.7 | 34.6 | 10.1 | 165.7 | 25.2 | | 105.6 | 29.8 | 20.1 | 19.2 | 33.5 | 4.2 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 26.7 | 34.6 | 10.1 | 165.7 | 25.2 | | 105.6 | 29.8 | 20.1 | 19.2 | 33.5 | 4.2 | | Queue Length 50th (ft) | 68 | 140 | 20 | ~118 | 66 | | ~139 | 350 | 151 | 20 | 389 | 5 | | Queue Length 95th (ft) | 106 | 178 | 53 | #203 | 95 | | m#175 | 409 | m194 | 47 | #569 | 31 | | Internal Link Dist (ft) | | 517 | | | 373 | | | 888 | | | 745 | | | Turn Bay Length (ft) | 70 | | | 200 | | | 160 | | 100 | 230 | | 100 | | Base Capacity (vph) | 334 | 1101 | 512 | 267 | 1122 | | 216 | 2437 | 902 | 182 | 2222 | 815 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.50 | 0.47 | 0.25 | 1.22 | 0.27 | | 1.12 | 0.66 | 0.36 | 0.46 | 0.92 | 0.13 | Area Type: Other Volume
exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | • | → | • | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------|------|------------|------|------|----------|------|------|----------|------|-------------|-------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ↑ ↑ | | ሻ | ħβ | | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 90 | | 0 | 175 | | 0 | 240 | | 100 | 140 | | 60 | | Storage Lanes | 1 | | 0 | 1 | | 0 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 30 | | | 30 | | | 35 | | | 35 | | | Link Distance (ft) | | 592 | | | 452 | | | 615 | | | 968 | | | Travel Time (s) | | 13.5 | | | 10.3 | | | 12.0 | | | 18.9 | | | Lane Group Flow (vph) | 10 | 423 | 0 | 216 | 1083 | 0 | 186 | 2134 | 31 | 165 | 2010 | 31 | | v/c Ratio | 0.06 | 0.46 | | 0.76 | 1.02 | | 1.00 | 0.93 | 0.04 | 0.89 | 0.88 | 0.04 | | Control Delay | 17.1 | 25.7 | | 41.5 | 63.9 | | 86.8 | 33.5 | 0.3 | 48.1 | 16.8 | 1.0 | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 17.1 | 25.7 | | 41.5 | 63.9 | | 86.8 | 33.5 | 0.3 | 48.1 | 16.8 | 1.0 | | Queue Length 50th (ft) | 3 | 87 | | 82 | ~319 | | ~65 | ~455 | 0 | 30 | 391 | 0 | | Queue Length 95th (ft) | 13 | 130 | | #158 | #460 | | #199 | #572 | 2 | m#86 | m#416 | m0 | | Internal Link Dist (ft) | | 512 | | | 372 | | | 535 | | | 888 | | | Turn Bay Length (ft) | 90 | | | 175 | | | 240 | | 100 | 140 | | 60 | | Base Capacity (vph) | 179 | 1048 | | 285 | 1059 | | 186 | 2294 | 820 | 186 | 2294 | 820 | | Starvation Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.06 | 0.40 | | 0.76 | 1.02 | | 1.00 | 0.93 | 0.04 | 0.89 | 0.88 | 0.04 | Area Type: Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | • | → | • | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------|------|------------|------|------|------------|------|------|----------|----------|-------------|-------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ } | | ሻ | ∱ } | | ሻ | ተተተ | 7 | ሻ | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 90 | | 0 | 175 | | 0 | 240 | | 100 | 140 | | 60 | | Storage Lanes | 1 | | 0 | 1 | | 0 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 35 | | | 35 | | | Link Distance (ft) | | 592 | | | 452 | | | 615 | | | 968 | | | Travel Time (s) | | 10.1 | | | 7.7 | | | 12.0 | | | 18.9 | | | Lane Group Flow (vph) | 102 | 449 | 0 | 214 | 551 | 0 | 153 | 2000 | 51 | 276 | 2143 | 71 | | v/c Ratio | 0.50 | 0.58 | | 0.94 | 0.65 | | 0.83 | 0.86 | 0.06 | 1.14 | 0.86 | 0.08 | | Control Delay | 30.1 | 30.7 | | 74.3 | 30.2 | | 51.4 | 27.7 | 1.9 | 109.3 | 11.4 | 0.9 | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 30.1 | 30.7 | | 74.3 | 30.2 | | 51.4 | 27.7 | 1.9 | 109.3 | 11.4 | 0.9 | | Queue Length 50th (ft) | 41 | 107 | | 93 | 131 | | 36 | 362 | 0 | ~125 | 404 | 2 | | Queue Length 95th (ft) | 71 | 143 | | #182 | 171 | | #157 | #537 | 11 | m#160 | m#530 | m3 | | Internal Link Dist (ft) | | 512 | | | 372 | | | 535 | | | 888 | | | Turn Bay Length (ft) | 90 | | | 175 | | | 240 | | 100 | 140 | | 60 | | Base Capacity (vph) | 202 | 1048 | | 228 | 1054 | | 184 | 2335 | 817 | 243 | 2505 | 876 | | Starvation Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.50 | 0.43 | | 0.94 | 0.52 | | 0.83 | 0.86 | 0.06 | 1.14 | 0.86 | 0.08 | Area Type: Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. m Volume for 95th percentile queue is metered by upstream signal. | | • | • | 4 | † | ţ | 4 | |-------------------------|------|-------|------|----------|-------|------| | Lane Group | EBL | EBR | NBL | NBT | SBT | SBR | | Lane Configurations | | ווווו | ነነነነ | | 1111 | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | | 0% | 0% | | | Storage Length (ft) | 0 | 0 | 0 | | | 0 | | Storage Lanes | 0 | 4 | 4 | | | 1 | | Taper Length (ft) | 25 | | 25 | | | | | Right Turn on Red | | No | | | | Yes | | Link Speed (mph) | 40 | | | 35 | 35 | | | Link Distance (ft) | 251 | | | 195 | 286 | | | Travel Time (s) | 4.3 | | | 3.8 | 5.6 | | | Lane Group Flow (vph) | 0 | 2771 | 1948 | 0 | 2396 | 10 | | v/c Ratio | | 1.29 | 0.57 | | 1.15 | 0.01 | | Control Delay | | 156.2 | 15.0 | | 104.5 | 0.0 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 156.2 | 15.0 | | 104.5 | 0.0 | | Queue Length 50th (ft) | | ~791 | 192 | | ~471 | 0 | | Queue Length 95th (ft) | | #892 | 225 | | #547 | 0 | | Internal Link Dist (ft) | 171 | | | 115 | 206 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | | 2152 | 3420 | | 2079 | 1583 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 1.29 | 0.57 | | 1.15 | 0.01 | Area Type: Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | • | ~ | † | ļ | 4 | |-------------------------|------|-------|----------|----------|-------|------| | Lane Group | EBL | EBR | NBL | NBT | SBT | SBR | | Lane Configurations | | 7777 | ነነነነ | | 1111 | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | | 0% | 0% | | | Storage Length (ft) | 0 | 0 | 0 | | | 0 | | Storage Lanes | 0 | 4 | 4 | | | 1 | | Taper Length (ft) | 25 | | 25 | | | | | Right Turn on Red | | Yes | | | | Yes | | Link Speed (mph) | 40 | | | 40 | 35 | | | Link Distance (ft) | 251 | | | 195 | 286 | | | Travel Time (s) | 4.3 | | | 3.3 | 5.6 | | | Lane Group Flow (vph) | 0 | 2918 | 1755 | 0 | 2449 | 20 | | v/c Ratio | | 1.36 | 0.51 | | 1.18 | 0.01 | | Control Delay | | 186.4 | 14.3 | | 115.1 | 0.0 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 186.4 | 14.3 | | 115.1 | 0.0 | | Queue Length 50th (ft) | | ~859 | 167 | | ~489 | 0 | | Queue Length 95th (ft) | | #959 | 196 | | #565 | 0 | | Internal Link Dist (ft) | 171 | | | 115 | 206 | | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | | 2152 | 3420 | | 2079 | 1583 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 1.36 | 0.51 | | 1.18 | 0.01 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | • | † | / | - | ↓ | |-------------------------|------|-------|----------|------|------|----------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 77.77 | ተተኈ | | 44 | ተተተ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 300 | | | Storage Lanes | 0 | 2 | | 0 | 2 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | Yes | | Yes | | | | Link Speed (mph) | 30 | | 35 | | | 35 | | Link Distance (ft) | 410 | | 338 | | | 534 | | Travel Time (s) | 9.3 | | 6.6 | | | 10.4 | | Lane Group Flow (vph) | 0 | 990 | 4146 | 0 | 438 | 2823 | | v/c Ratio | | 1.25 | 1.28 | | 0.45 | 0.56 | | Control Delay | | 161.9 | 151.5 | | 37.1 | 0.4 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 161.9 | 151.5 | | 37.1 | 0.4 | | Queue Length 50th (ft) | | ~544 | ~1498 | | 143 | 0 | | Queue Length 95th (ft) | | #688 | #1563 | | 193 | 0 | | Internal Link Dist (ft) | 330 | | 258 | | | 454 | | Turn Bay Length (ft) | | | | | 300 | | | Base Capacity (vph) | | 789 | 3241 | | 972 | 5085 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 1.25 | 1.28 | | 0.45 | 0.56 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | ✓ | • | † | / | -
 ↓ | |-------------------------|------|-------|----------|------|------|----------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 77 | ተተኈ | | 77 | ተተተ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 300 | | | Storage Lanes | 0 | 2 | | 0 | 2 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | Yes | | Yes | | | | Link Speed (mph) | 30 | | 35 | | | 35 | | Link Distance (ft) | 410 | | 338 | | | 534 | | Travel Time (s) | 9.3 | | 6.6 | | | 10.4 | | Lane Group Flow (vph) | 0 | 835 | 4155 | 0 | 299 | 2753 | | v/c Ratio | | 1.20 | 1.23 | | 0.35 | 0.54 | | Control Delay | | 143.0 | 126.9 | | 38.4 | 0.4 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 143.0 | 126.9 | | 38.4 | 0.4 | | Queue Length 50th (ft) | | ~445 | ~1458 | | 98 | 0 | | Queue Length 95th (ft) | | #584 | #1523 | | 140 | 0 | | Internal Link Dist (ft) | 330 | | 258 | | | 454 | | Turn Bay Length (ft) | | | | | 300 | | | Base Capacity (vph) | | 696 | 3386 | | 858 | 5085 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 1.20 | 1.23 | | 0.35 | 0.54 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | • | † | / | - | ţ | |-------------------------|-------|------|----------|------|------|------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | 16.16 | 77 | 4111 | | | ተተተ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 200 | 230 | | 175 | 0 | | | Storage Lanes | 2 | 0 | | 0 | 0 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | No | | Yes | | | | Link Speed (mph) | 35 | | 35 | | | 35 | | Link Distance (ft) | 620 | | 550 | | | 520 | | Travel Time (s) | 12.1 | | 10.7 | | | 10.1 | | Lane Group Flow (vph) | 406 | 563 | 4953 | 0 | 0 | 2823 | | v/c Ratio | 0.44 | 0.82 | 1.21 | | | 0.87 | | Control Delay | 37.1 | 51.2 | 122.1 | | | 22.5 | | Queue Delay | 0.0 | 0.0 | 0.0 | | | 0.0 | | Total Delay | 37.1 | 51.2 | 122.1 | | | 22.5 | | Queue Length 50th (ft) | 134 | 231 | ~1375 | | | 609 | | Queue Length 95th (ft) | 168 | 285 | #1493 | | | #809 | | Internal Link Dist (ft) | 540 | | 470 | | | 440 | | Turn Bay Length (ft) | 200 | 230 | | | | | | Base Capacity (vph) | 1115 | 829 | 4080 | | | 3246 | | Starvation Cap Reductn | 0 | 0 | 0 | | | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | | | 0 | | Storage Cap Reductn | 0 | 0 | 0 | | | 0 | | Reduced v/c Ratio | 0.36 | 0.68 | 1.21 | | | 0.87 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | € | • | † | / | - | ţ | |-------------------------|-------|------|----------|------|------|------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | 14.54 | 77 | 4111 | | | ተተተ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 200 | 230 | | 175 | 0 | | | Storage Lanes | 2 | 0 | | 0 | 0 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | No | | Yes | | | | Link Speed (mph) | 35 | | 35 | | | 35 | | Link Distance (ft) | 620 | | 550 | | | 520 | | Travel Time (s) | 12.1 | | 10.7 | | | 10.1 | | Lane Group Flow (vph) | 677 | 333 | 5073 | 0 | 0 | 2781 | | v/c Ratio | 0.79 | 0.53 | 1.21 | | | 0.83 | | Control Delay | 48.7 | 41.2 | 117.9 | | | 19.5 | | Queue Delay | 0.0 | 0.0 | 0.0 | | | 0.0 | | Total Delay | 48.7 | 41.2 | 117.9 | | | 19.5 | | Queue Length 50th (ft) | 253 | 127 | ~1396 | | | 546 | | Queue Length 95th (ft) | 295 | 164 | #1524 | | | 744 | | Internal Link Dist (ft) | 540 | | 470 | | | 440 | | Turn Bay Length (ft) | 200 | 230 | | | | | | Base Capacity (vph) | 1115 | 820 | 4205 | | | 3340 | | Starvation Cap Reductn | 0 | 0 | 0 | | | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | | | 0 | | Storage Cap Reductn | 0 | 0 | 0 | | | 0 | | Reduced v/c Ratio | 0.61 | 0.41 | 1.21 | | | 0.83 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | • | † | / | - | ļ | |-------------------------|------|-------|----------|------|------|----------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 777 | ተተተ | | | ^ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 0 | | | Storage Lanes | 0 | 3 | | 0 | 0 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | No | | Yes | | | | Link Speed (mph) | 50 | | 35 | | | 35 | | Link Distance (ft) | 820 | | 237 | | | 230 | | Travel Time (s) | 11.2 | | 4.6 | | | 4.5 | | Lane Group Flow (vph) | 0 | 2642 | 2484 | 0 | 0 | 3505 | | v/c Ratio | | 1.40 | 1.26 | | | 0.99 | | Control Delay | | 207.2 | 146.8 | | | 15.1 | | Queue Delay | | 0.0 | 0.0 | | | 0.0 | | Total Delay | | 207.2 | 146.8 | | | 15.1 | | Queue Length 50th (ft) | | ~890 | ~654 | | | 0 | | Queue Length 95th (ft) | | #1004 | #750 | | | #106 | | Internal Link Dist (ft) | 740 | | 157 | | | 150 | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | | 1885 | 1977 | | | 3539 | | Starvation Cap Reductn | | 0 | 0 | | | 0 | | Spillback Cap Reductn | | 0 | 0 | | | 0 | | Storage Cap Reductn | | 0 | 0 | | | 0 | | Reduced v/c Ratio | | 1.40 | 1.26 | | | 0.99 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | • | † | / | - | ↓ | |-------------------------|------|-------|----------|------|------|----------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 777 | ተተተ | | | ^ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 0 | | | Storage Lanes | 0 | 3 | | 0 | 0 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | No | | Yes | | | | Link Speed (mph) | 50 | | 35 | | | 35 | | Link Distance (ft) | 820 | | 246 | | | 230 | | Travel Time (s) | 11.2 | | 4.8 | | | 4.5 | | Lane Group Flow (vph) | 0 | 2426 | 2957 | 0 | 0 | 3202 | | v/c Ratio | | 1.41 | 1.34 | | | 0.90 | | Control Delay | | 211.0 | 182.7 | | | 4.8 | | Queue Delay | | 0.0 | 0.0 | | | 0.0 | | Total Delay | | 211.0 | 182.7 | | | 4.8 | | Queue Length 50th (ft) | | ~819 | ~812 | | | 0 | | Queue Length 95th (ft) | | #933 | #905 | | | 0 | | Internal Link Dist (ft) | 740 | | 166 | | | 150 | | Turn Bay Length (ft) | | | | | | | | Base Capacity (vph) | | 1724 | 2203 | | | 3539 | | Starvation Cap Reductn | | 0 | 0 | | | 0 | | Spillback Cap Reductn | | 0 | 0 | | | 0 | | Storage Cap Reductn | | 0 | 0 | | | 0 | | Reduced v/c Ratio | | 1.41 | 1.34 | | | 0.90 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | → | • | • | ← | • | 4 | † | / | \ | ↓ | 4 | |-------------------------|-------|----------|------|------|----------|------|------|----------|------|----------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 77 | ተተተ | 7 | 77 | ተተተ | 7 | ሻ | ተተተ | 77 | 1/1 | 4111 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 240 | | 120 | 270 | | 350 | 240 | | 70 | 220 | | 80 | | Storage Lanes | 2 | | 1 | 2 | | 1 | 1 | | 1 | 2 | | 0 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 35 | | | 35 | | | Link Distance (ft) | | 538 | | | 1042 | | | 676 | | | 375 | | | Travel Time (s) | | 9.2 | | | 17.8 | | | 13.2 | | | 7.3 | | | Lane Group Flow (vph) | 272 | 391 | 239 | 228 | 217 | 435 | 217 | 1859 | 652 | 652 | 2968 | 0 | | v/c Ratio | 1.02 | 0.54 | 0.58 | 0.85 | 0.30 | 0.64 | 0.80 | 0.96 | 0.49 | 0.86 | 1.04 | | | Control Delay | 103.1 | 38.1 | 11.8 | 70.3 | 34.9 | 23.1 | 61.2 | 41.4 | 8.5 | 48.0 | 53.3 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 103.1 | 38.1 | 11.8 | 70.3 | 34.9 | 23.1 | 61.2 | 41.4 | 8.5 | 48.0 | 53.3 | | | Queue Length 50th (ft) | ~82 | 76 | 7 | 67 | 41 | 165 | 121 | 372 | 50 | 184 | ~537 | | | Queue Length 95th (ft) | #164 | 104 | 71 | #131 | 61 | 269 | #269 | #488 | 99 | #309 | #613 | | | Internal Link Dist (ft) | | 458 | | | 962 | | | 596 | | | 295 | | | Turn Bay Length (ft) | 240 | | 120 | 270 | | 350 | 240 | | 70 | 220 | | | | Base Capacity (vph) | 267 | 904 | 460 | 267 | 904 | 682 | 272 | 1933 | 1320 | 757 | 2861 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 1.02 | 0.43 | 0.52 | 0.85 | 0.24 | 0.64 | 0.80 | 0.96 | 0.49 | 0.86 | 1.04 | | Area Type: Other Volume exceeds capacity, queue is theoretically
infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | ۶ | → | • | • | ← | • | 4 | † | / | > | ↓ | 4 | |-------------------------|------|----------|------|-------|----------|------|------|----------|------|-------------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 77 | ተተተ | 7 | 77 | ተተተ | 7 | ሻ | ተተተ | 77 | 1414 | 4111 | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 240 | | 120 | 270 | | 350 | 240 | | 70 | 220 | | 80 | | Storage Lanes | 2 | | 1 | 2 | | 1 | 1 | | 1 | 2 | | 0 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 35 | | | 35 | | | Link Distance (ft) | | 538 | | | 1042 | | | 676 | | | 375 | | | Travel Time (s) | | 9.2 | | | 17.8 | | | 13.2 | | | 7.3 | | | Lane Group Flow (vph) | 229 | 354 | 177 | 354 | 406 | 625 | 302 | 2042 | 1000 | 583 | 2552 | 0 | | v/c Ratio | 0.75 | 0.50 | 0.48 | 1.16 | 0.57 | 0.96 | 0.84 | 1.03 | 0.74 | 0.83 | 1.03 | | | Control Delay | 56.6 | 37.9 | 10.1 | 140.9 | 39.1 | 52.4 | 57.1 | 57.5 | 16.1 | 47.2 | 53.3 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 56.6 | 37.9 | 10.1 | 140.9 | 39.1 | 52.4 | 57.1 | 57.5 | 16.1 | 47.2 | 53.3 | | | Queue Length 50th (ft) | 67 | 69 | 0 | ~124 | 80 | 313 | 166 | ~461 | 148 | 164 | ~454 | | | Queue Length 95th (ft) | #119 | 94 | 54 | #210 | 107 | #543 | #344 | #557 | 234 | #286 | #532 | | | Internal Link Dist (ft) | | 458 | | | 962 | | | 596 | | | 295 | | | Turn Bay Length (ft) | 240 | | 120 | 270 | | 350 | 240 | | 70 | 220 | | | | Base Capacity (vph) | 305 | 904 | 421 | 305 | 904 | 652 | 361 | 1977 | 1359 | 701 | 2487 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.75 | 0.39 | 0.42 | 1.16 | 0.45 | 0.96 | 0.84 | 1.03 | 0.74 | 0.83 | 1.03 | | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | → | • | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------|------|------------|------|------|------------|------|------|----------|------|-------------|------------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ↑ ↑ | | , Y | ∱ } | | 7 | | 7 | * | ∱ } | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 140 | | 0 | 300 | | 0 | 227 | | 0 | 140 | | 0 | | Storage Lanes | 1 | | 0 | 2 | | 0 | 1 | | 1 | 1 | | 0 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 30 | | | 30 | | | Link Distance (ft) | | 979 | | | 902 | | | 867 | | | 372 | | | Travel Time (s) | | 16.7 | | | 15.4 | | | 19.7 | | | 8.5 | | | Lane Group Flow (vph) | 52 | 979 | 0 | 31 | 1382 | 0 | 371 | 21 | 103 | 41 | 20 | 0 | | v/c Ratio | 0.39 | 0.56 | | 0.10 | 0.65 | | 0.95 | 0.06 | 0.26 | 0.33 | 0.07 | | | Control Delay | 30.9 | 17.8 | | 10.4 | 15.0 | | 72.4 | 23.1 | 10.9 | 45.1 | 25.6 | | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 30.9 | 17.8 | | 10.4 | 15.0 | | 72.4 | 23.1 | 10.9 | 45.1 | 25.6 | | | Queue Length 50th (ft) | 21 | 211 | | 8 | 282 | | 212 | 12 | 25 | 23 | 2 | | | Queue Length 95th (ft) | #74 | 295 | | 22 | 396 | | #385 | 22 | 38 | 53 | 13 | | | Internal Link Dist (ft) | | 899 | | | 822 | | | 787 | | | 292 | | | Turn Bay Length (ft) | 140 | | | 300 | | | 227 | | | 140 | | | | Base Capacity (vph) | 133 | 1734 | | 303 | 2124 | | 389 | 941 | 396 | 330 | 791 | | | Starvation Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.39 | 0.56 | | 0.10 | 0.65 | | 0.95 | 0.02 | 0.26 | 0.12 | 0.03 | | Area Type: Other ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ۶ | → | • | • | • | • | 4 | † | ~ | - | ļ | 4 | |-------------------------|------|------------|------|------|------------|------|-------|----------|------|------|------------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ∱ } | | ሻ | ∱ } | | ሻ | ^ | 7 | ሻ | ∱ } | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 140 | | 0 | 300 | | 0 | 227 | | 0 | 140 | | 0 | | Storage Lanes | 1 | | 0 | 2 | | 0 | 1 | | 1 | 1 | | 0 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 40 | | | 30 | | | 30 | | | Link Distance (ft) | | 979 | | | 902 | | | 867 | | | 372 | | | Travel Time (s) | | 16.7 | | | 15.4 | | | 19.7 | | | 8.5 | | | Lane Group Flow (vph) | 52 | 742 | 0 | 62 | 1062 | 0 | 629 | 21 | 247 | 124 | 72 | 0 | | v/c Ratio | 0.45 | 0.59 | | 0.26 | 0.69 | | 1.28 | 0.05 | 0.50 | 0.61 | 0.14 | | | Control Delay | 41.9 | 20.1 | | 19.4 | 23.9 | | 171.8 | 17.2 | 14.4 | 47.8 | 19.3 | | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 41.9 | 20.1 | | 19.4 | 23.9 | | 171.8 | 17.2 | 14.4 | 47.8 | 19.3 | | | Queue Length 50th (ft) | 23 | 127 | | 20 | 246 | | ~458 | 11 | ~109 | 67 | 10 | | | Queue Length 95th (ft) | #80 | 206 | | 49 | 359 | | #664 | 16 | 56 | 116 | 26 | | | Internal Link Dist (ft) | | 899 | | | 822 | | | 787 | | | 292 | | | Turn Bay Length (ft) | 140 | | | 300 | | | 227 | | | 140 | | | | Base Capacity (vph) | 115 | 1261 | | 236 | 1549 | | 491 | 1055 | 492 | 332 | 803 | | | Starvation Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.45 | 0.59 | | 0.26 | 0.69 | | 1.28 | 0.02 | 0.50 | 0.37 | 0.09 | | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | → | \rightarrow | • | ← | • | 4 | † | <i>></i> | > | ļ | 4 | |-------------------------|------|----------|---------------|------|---------------|------|------|----------|-------------|-------------|---------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 1111 | 7 | ħ | #### # | | | ^ | 7 | Ť | | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 10 | 10 | 12 | 12 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 0 | | 0 | 150 | | 0 | 0 | | 0 | 200 | | 0 | | Storage Lanes | 0 | | 1 | 1 | | 0 | 0 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 30 | | | 30 | | | Link Distance (ft) | | 214 | | | 472 | | | 385 | | | 678 | | | Travel Time (s) | | 4.2 | | | 9.2 | | | 8.8 | | | 15.4 | | | Lane Group Flow (vph) | 0 | 1929 | 173 | 133 | 2551 | 0 | 0 | 153 | 133 | 31 | 296 | 235 | | v/c Ratio | | 0.64 | 0.20 | 0.65 | 0.66 | | | 0.15 | 0.24 | 0.09 | 0.56 | 0.49 | | Control Delay | | 23.8 | 3.2 | 64.9 | 13.9 | | | 32.7 | 6.6 | 32.7 | 41.6 | 32.7 | | Queue Delay | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | | 23.8 | 3.2 | 64.9 | 13.9 | | | 32.7 | 6.6 | 32.7 | 41.6 | 32.7 | | Queue Length 50th (ft) | | 312 | 0 | 100 | 323 | | | 46 | 0 | 18 | 196 | 122 | | Queue Length 95th (ft) | | 377 | 38 | 162 | 360 | | | 74 | 47 | 43 | 288 | 203 | | Internal Link Dist (ft) | | 134 | | | 392 | | | 305 | | | 598 | | | Turn Bay Length (ft) | | | | 150 | | | | | | 200 | | | | Base Capacity (vph) | | 2993 | 878 | 265 | 3867 | | | 1002 | 543 | 345 | 527 | 480 | | Starvation Cap Reductn | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | | 0.64 | 0.20 | 0.50 | 0.66 | | | 0.15 | 0.24 | 0.09 | 0.56 | 0.49 | Area Type: | | ۶ | → | • | • | ← | • | 4 | † | <i>></i> | > | ļ | 4 | |-------------------------|------|----------|------|------|----------|------|------|----------|-------------|-------------|---------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | | 1111 | 7 | ň | #### | | | ^ | 7 | 7 | | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 10 | 10 | 12 | 12 |
10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 0 | | 0 | 150 | | 0 | 0 | | 0 | 200 | | 0 | | Storage Lanes | 0 | | 1 | 1 | | 0 | 0 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | No | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 30 | | | 30 | | | Link Distance (ft) | | 214 | | | 472 | | | 385 | | | 678 | | | Travel Time (s) | | 4.2 | | | 9.2 | | | 8.8 | | | 15.4 | | | Lane Group Flow (vph) | 0 | 2071 | 194 | 143 | 1541 | 0 | 0 | 102 | 255 | 31 | 286 | 439 | | v/c Ratio | | 0.80 | 0.28 | 0.70 | 0.45 | | | 0.08 | 0.41 | 0.08 | 0.44 | 0.75 | | Control Delay | | 32.5 | 23.9 | 69.4 | 14.5 | | | 26.4 | 5.5 | 27.0 | 32.6 | 40.2 | | Queue Delay | | 0.0 | 0.0 | 0.0 | 0.0 | | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | | 32.5 | 23.9 | 69.4 | 14.5 | | | 26.4 | 5.5 | 27.0 | 32.6 | 40.2 | | Queue Length 50th (ft) | | 402 | 97 | 107 | 184 | | | 27 | 0 | 16 | 169 | 270 | | Queue Length 95th (ft) | | 461 | 156 | 176 | 211 | | | 48 | 57 | 39 | 250 | 402 | | Internal Link Dist (ft) | | 134 | | | 392 | | | 305 | | | 598 | | | Turn Bay Length (ft) | | | | 150 | | | | | | 200 | | | | Base Capacity (vph) | | 2601 | 688 | 236 | 3454 | | | 1238 | 621 | 382 | 652 | 583 | | Starvation Cap Reductn | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | | 0.80 | 0.28 | 0.61 | 0.45 | | | 0.08 | 0.41 | 0.08 | 0.44 | 0.75 | | Intersection Summary | | | | | | | | | | | | | Area Type: | | • | → | \rightarrow | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------|------|----------|---------------|------|----------|------|------|----------|------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ^ | 7 | ሻ | ^ | 7 | ሻ | ^ | 7 | ሻ | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 195 | | 0 | 250 | | 150 | 130 | | 0 | 270 | | 150 | | Storage Lanes | 1 | | 1 | 1 | | 1 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 35 | | | 35 | | | 35 | | | Link Distance (ft) | | 703 | | | 815 | | | 468 | | | 490 | | | Travel Time (s) | | 12.0 | | | 15.9 | | | 9.1 | | | 9.5 | | | Lane Group Flow (vph) | 163 | 408 | 173 | 204 | 1449 | 276 | 214 | 1092 | 133 | 133 | 398 | 133 | | v/c Ratio | 0.88 | 0.34 | 0.23 | 0.43 | 1.07 | 0.39 | 0.54 | 1.03 | 0.23 | 0.72 | 0.27 | 0.22 | | Control Delay | 61.1 | 23.0 | 4.1 | 15.8 | 72.4 | 9.8 | 24.9 | 67.8 | 5.4 | 42.8 | 25.3 | 9.2 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 61.1 | 23.0 | 4.1 | 15.8 | 72.4 | 9.8 | 24.9 | 67.8 | 5.4 | 42.8 | 25.3 | 9.2 | | Queue Length 50th (ft) | 49 | 90 | 6 | 62 | ~483 | 43 | 79 | ~353 | 0 | 47 | 63 | 19 | | Queue Length 95th (ft) | #156 | 128 | 40 | 105 | #616 | 102 | 132 | #478 | 39 | #108 | 90 | 55 | | Internal Link Dist (ft) | | 623 | | | 735 | | | 388 | | | 410 | | | Turn Bay Length (ft) | 195 | | | 250 | | 150 | 130 | | | 270 | | 150 | | Base Capacity (vph) | 185 | 1212 | 741 | 484 | 1360 | 714 | 393 | 1061 | 571 | 184 | 1469 | 602 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.88 | 0.34 | 0.23 | 0.42 | 1.07 | 0.39 | 0.54 | 1.03 | 0.23 | 0.72 | 0.27 | 0.22 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | → | • | • | • | • | 4 | † | <i>></i> | > | ļ | 4 | |-------------------------|------|----------|------|------|----------|------|------|----------|-------------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | ^ | 7 | ň | ^ | 7 | 7 | ^ | 7 | * | ተተተ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 195 | | 0 | 250 | | 150 | 130 | | 0 | 270 | | 150 | | Storage Lanes | 1 | | 1 | 1 | | 1 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 40 | | | 35 | | | 35 | | | 35 | | | Link Distance (ft) | | 703 | | | 815 | | | 468 | | | 490 | | | Travel Time (s) | | 12.0 | | | 15.9 | | | 9.1 | | | 9.5 | | | Lane Group Flow (vph) | 188 | 760 | 198 | 177 | 1125 | 219 | 271 | 823 | 385 | 208 | 573 | 125 | | v/c Ratio | 0.92 | 0.65 | 0.28 | 0.60 | 0.91 | 0.33 | 0.77 | 0.81 | 0.65 | 0.86 | 0.38 | 0.20 | | Control Delay | 65.6 | 28.9 | 10.1 | 23.0 | 39.7 | 7.5 | 36.1 | 37.0 | 19.2 | 51.4 | 25.7 | 7.9 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 65.6 | 28.9 | 10.1 | 23.0 | 39.7 | 7.5 | 36.1 | 37.0 | 19.2 | 51.4 | 25.7 | 7.9 | | Queue Length 50th (ft) | 60 | 192 | 39 | 56 | 315 | 20 | 100 | 227 | 92 | 74 | 93 | 16 | | Queue Length 95th (ft) | #183 | 255 | 82 | 96 | #443 | 69 | #192 | 299 | 193 | #188 | 125 | 49 | | Internal Link Dist (ft) | | 623 | | | 735 | | | 388 | | | 410 | | | Turn Bay Length (ft) | 195 | | | 250 | | 150 | 130 | | | 270 | | 150 | | Base Capacity (vph) | 204 | 1168 | 700 | 297 | 1242 | 671 | 353 | 1022 | 595 | 242 | 1525 | 635 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.92 | 0.65 | 0.28 | 0.60 | 0.91 | 0.33 | 0.77 | 0.81 | 0.65 | 0.86 | 0.38 | 0.20 | Area Type: Other ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ၨ | → | \rightarrow | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------|------|----------|---------------|-------|----------|------|------|----------|------|-------------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ň | | 7 | ř | | 7 | | ተተተ | 7 | ¥ | ^ | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 205 | | 0 | 243 | | 0 | 0 | | 100 | 175 | | 0 | | Storage Lanes | 1 | | 1 | 1 | | 1 | 0 | | 1 | 1 | | 0 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 30 | | | 30 | | | 35 | | | 35 | | | Link Distance (ft) | | 807 | | | 562 | | | 431 | | | 476 | | | Travel Time (s) | | 18.3 | | | 12.8 | | | 8.4 | | | 9.3 | | | Lane Group Flow (vph) | 247 | 216 | 464 | 103 | 0 | 144 | 0 | 1082 | 103 | 289 | 608 | 0 | | v/c Ratio | 0.74 | 0.68 | 0.94 | 1.26 | | 0.20 | | 0.88 | 0.21 | 1.04 | 0.30 | | | Control Delay | 49.7 | 47.0 | 47.9 | 216.3 | | 7.2 | | 42.5 | 2.1 | 100.4 | 19.1 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 49.7 | 47.0 | 47.9 | 216.3 | | 7.2 | | 42.5 | 2.1 | 100.4 | 19.1 | | | Queue Length 50th (ft) | 134 | 116 | 133 | ~74 | | 16 | | 217 | 0 | ~128 | 84 | | | Queue Length 95th (ft) | #242 | #205 | #327 | #176 | | 52 | | #293 | 11 | #287 | 113 | | | Internal Link Dist (ft) | | 727 | | | 482 | | | 351 | | | 396 | | | Turn Bay Length (ft) | 205 | | | 243 | | | | | 100 | 175 | | | | Base Capacity (vph) | 334 | 320 | 493 | 82 | | 723 | | 1232 | 489 | 278 | 2023 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.74 | 0.68 | 0.94 | 1.26 | | 0.20 | | 0.88 | 0.21 | 1.04 | 0.30 | | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. # 95th percentile volume exceeds capacity, queue may be longer. | | ۶ | → | • | • | ← | • | • | † | / | > | ļ | 4 | |-------------------------|------|----------|------|------|----------|------|------|----------|------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | 1 | 7 | ሻ | | 7 | | ተተተ | 7 | ሻ | ተተተ | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 205 | | 0 | 243 | | 0 | 0 | | 100 | 175 | | 0 | | Storage Lanes | 1 | | 1 | 1 | | 1 | 0 | | 1 | 1 | | 0 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 30 | | | 30 | | | 35 | | | 35 | | | Link Distance (ft) | | 807 | | | 562 | | | 431 | | | 476 | | | Travel Time (s) | |
18.3 | | | 12.8 | | | 8.4 | | | 9.3 | | | Lane Group Flow (vph) | 458 | 406 | 531 | 52 | 0 | 240 | 0 | 958 | 135 | 229 | 552 | 0 | | v/c Ratio | 0.83 | 0.74 | 0.89 | 0.55 | | 0.56 | | 0.67 | 0.27 | 0.77 | 0.24 | | | Control Delay | 43.1 | 37.5 | 38.9 | 60.3 | | 14.5 | | 33.1 | 5.8 | 38.0 | 17.2 | | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | | | Total Delay | 43.1 | 37.5 | 38.9 | 60.3 | | 14.5 | | 33.1 | 5.8 | 38.0 | 17.2 | | | Queue Length 50th (ft) | 236 | 204 | 207 | 28 | | 34 | | 189 | 0 | 86 | 75 | | | Queue Length 95th (ft) | #392 | 310 | #398 | #78 | | 69 | | 239 | 38 | #195 | 101 | | | Internal Link Dist (ft) | | 727 | | | 482 | | | 351 | | | 396 | | | Turn Bay Length (ft) | 205 | | | 243 | | | | | 100 | 175 | | | | Base Capacity (vph) | 570 | 569 | 615 | 96 | | 432 | | 1433 | 492 | 303 | 2258 | | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | | Storage Cap Reductn | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | 0 | 0 | | | Reduced v/c Ratio | 0.80 | 0.71 | 0.86 | 0.54 | | 0.56 | | 0.67 | 0.27 | 0.76 | 0.24 | | Area Type: ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |-------------------------|------|--|------|------|----------|------|------|----------|----------|-------------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 1/1 | ###################################### | | ሻ | 1111 | 7 | ሻ | ^ | 7 | ሻሻ | 414 | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 300 | | 1000 | 280 | | 200 | 120 | | 120 | 290 | | 260 | | Storage Lanes | 2 | | 1 | 1 | | 1 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 35 | | | 35 | | | Link Distance (ft) | | 1173 | | | 806 | | | 632 | | | 681 | | | Travel Time (s) | | 22.9 | | | 15.7 | | | 12.3 | | | 13.3 | | | Lane Group Flow (vph) | 691 | 1279 | 0 | 31 | 1969 | 742 | 31 | 41 | 62 | 207 | 133 | 526 | | v/c Ratio | 0.96 | 0.30 | | 0.38 | 0.83 | 0.79 | 0.23 | 0.20 | 0.23 | 0.39 | 0.28 | 0.75 | | Control Delay | 71.3 | 12.6 | | 69.2 | 36.9 | 18.8 | 56.0 | 55.7 | 1.9 | 46.3 | 46.3 | 29.7 | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 71.3 | 12.6 | | 69.2 | 36.9 | 18.8 | 56.0 | 55.7 | 1.9 | 46.3 | 46.3 | 29.7 | | Queue Length 50th (ft) | 274 | 128 | | 24 | 409 | 227 | 23 | 16 | 0 | 83 | 53 | 258 | | Queue Length 95th (ft) | #394 | 149 | | 57 | 464 | 341 | 55 | 35 | 0 | 126 | 87 | 395 | | Internal Link Dist (ft) | | 1093 | | | 726 | | | 552 | | | 601 | | | Turn Bay Length (ft) | 300 | | | 280 | | 200 | 120 | | 120 | 290 | | 260 | | Base Capacity (vph) | 720 | 4260 | | 82 | 2379 | 945 | 147 | 230 | 282 | 532 | 483 | 697 | | Starvation Cap Reductn | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.96 | 0.30 | | 0.38 | 0.83 | 0.79 | 0.21 | 0.18 | 0.22 | 0.39 | 0.28 | 0.75 | Area Type: Other ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | → | \rightarrow | • | ← | • | 4 | † | / | \ | ļ | 4 | |-------------------------|-------|----------|---------------|------|----------|------|------|----------|----------|----------|------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 14.54 | 41111 | | * | 1111 | 7 | 7 | ^ | 7 | ሻሻ | 4₽ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 10 | 10 | 12 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 300 | | 1000 | 280 | | 200 | 120 | | 120 | 290 | | 260 | | Storage Lanes | 2 | | 1 | 1 | | 1 | 1 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 35 | | | 35 | | | Link Distance (ft) | | 1173 | | | 806 | | | 632 | | | 681 | | | Travel Time (s) | | 22.9 | | | 15.7 | | | 12.3 | | | 13.3 | | | Lane Group Flow (vph) | 582 | 1582 | 0 | 71 | 1520 | 500 | 20 | 41 | 41 | 356 | 216 | 612 | | v/c Ratio | 0.67 | 0.39 | | 0.54 | 0.70 | 0.59 | 0.15 | 0.20 | 0.17 | 0.70 | 0.47 | 0.81 | | Control Delay | 43.0 | 15.9 | | 68.3 | 36.1 | 13.7 | 54.2 | 56.1 | 1.4 | 55.5 | 50.7 | 31.0 | | Queue Delay | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 43.0 | 15.9 | | 68.3 | 36.1 | 13.7 | 54.2 | 56.1 | 1.4 | 55.5 | 50.7 | 31.0 | | Queue Length 50th (ft) | 203 | 177 | | 53 | 306 | 150 | 15 | 16 | 0 | 152 | 90 | 307 | | Queue Length 95th (ft) | 265 | 207 | | 103 | 357 | 225 | 40 | 35 | 0 | 212 | 135 | 463 | | Internal Link Dist (ft) | | 1093 | | | 726 | | | 552 | | | 601 | | | Turn Bay Length (ft) | 300 | | | 280 | | 200 | 120 | | 120 | 290 | | 260 | | Base Capacity (vph) | 907 | 4007 | | 151 | 2163 | 843 | 147 | 230 | 257 | 507 | 456 | 762 | | Starvation Cap Reductn | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.64 | 0.39 | | 0.47 | 0.70 | 0.59 | 0.14 | 0.18 | 0.16 | 0.70 | 0.47 | 0.80 | | Intersection Summary | | | | | | | | | | | | | Area Type: | | • | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |-------------------------|-------|----------|------|-------|----------|------|-------|------------|----------|-------------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | 7 | 1111 | 7 | Ť | 4111 | | 14.54 | ↑ ↑ | | 44 | ^ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 10 | 10 | 10 | 10 | 11 | 12 | 12 | 12 | 10 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 235 | | 0 | 141 | | 0 | 332 | | 0 | 144 | | 197 | | Storage Lanes | 1 | | 1 | 1 | | 0 | 2 | | 0 | 2 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | No | | | No | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 40 | | | 40 | | | Link Distance (ft) | | 442 | | | 865 | | | 583 | | | 502 | | | Travel Time (s) | | 8.6 | | | 16.9 | | | 9.9 | | | 8.6 | | | Lane Group Flow (vph) | 161 | 1575 | 471 | 241 | 2989 | 0 | 793 | 1241 | 0 | 195 | 563 | 299 | | v/c Ratio | 1.28 | 0.83 | 1.01 | 1.42 | 1.44 | | 1.02 | 1.15 | | 0.76 | 1.01 | 0.55 | | Control Delay | 216.8 | 42.7 | 84.6 | 258.1 | 234.6 | | 83.1 | 116.0 | | 73.6 | 89.8 | 24.1 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | Total Delay | 216.8 | 42.7 | 84.6 | 258.1 | 234.6 | | 83.1 | 116.0 | | 73.6 | 89.8 | 24.1 | | Queue Length 50th (ft) | ~157 | 328 | ~369 | ~251 | ~915 | | ~335 | ~593 | | 77 | ~234 | 108 | | Queue Length 95th (ft) | #283 | 359 | #558 | #396 | #934 | | #433 | #691 | | #124 | #335 | 189 | | Internal Link Dist (ft) | | 362 | | | 785 | | | 503 | | | 422 | | | Turn Bay Length (ft) | 235 | | | 141 | | | 332 | | | 144 | | 197 | | Base Capacity (vph) | 126 | 1893 | 468 | 170 | 2069 | | 778 | 1080 | | 257 | 560 | 544 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | Reduced v/c Ratio | 1.28 | 0.83 | 1.01 | 1.42 | 1.44 | | 1.02 | 1.15 | | 0.76 | 1.01 | 0.55 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | - | • | • | • | • | | † | ~ | - | ↓ | 4 | |-------------------------|-------|-------|-------|-------|------|------|-------|------------|------|------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | Ĭ | 1111 | 7 | , j | 4111 | | 1,1 | ∱ } | | 1,4 | ^ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 10 | 10 | 10 | 10 | 11 | 12 | 12 | 12 | 10 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 235 | | 0 | 141 | | 0 | 332 | | 0 | 144 | | 197 | | Storage Lanes | 1 | | 1 | 1 | | 0 | 2 | | 0 | 2 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | No | | | No | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 40 | | | 40 | | | Link Distance (ft) | | 442 | | | 865 | | | 583 | | | 502 | | | Travel Time (s) | | 8.6 | | | 16.9 | | | 9.9 | | | 8.6 | | | Lane Group Flow (vph) | 274 | 2389 | 642 | 253 | 1916 | 0 | 705 | 1252 | 0 | 242 | 863 | 200 | | v/c Ratio | 1.33 | 1.20 | 1.30 | 1.32 | 0.97 | | 1.09 | 1.12 | | 0.72 | 1.07 | 0.29 | | Control Delay | 218.8 | 130.7 | 185.6 | 216.3 | 54.9 | | 108.4 | 104.5 | | 65.8 | 95.7 | 10.3 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 0.0 | | 0.0 | 0.0 | 0.0 | | Total Delay | 218.8 | 130.7 | 185.6 | 216.3 | 54.9 | | 108.4
 104.5 | | 65.8 | 95.7 | 10.3 | | Queue Length 50th (ft) | ~275 | ~652 | ~638 | ~253 | 424 | | ~317 | ~585 | | 95 | ~389 | 34 | | Queue Length 95th (ft) | #448 | #725 | #865 | #418 | #512 | | #437 | #725 | | #146 | #518 | 87 | | Internal Link Dist (ft) | | 362 | | | 785 | | | 503 | | | 422 | | | Turn Bay Length (ft) | 235 | | | 141 | | | 332 | | | 144 | | 197 | | Base Capacity (vph) | 206 | 1993 | 492 | 192 | 1970 | | 646 | 1117 | | 334 | 808 | 692 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 0 | 0 | 0 | | Reduced v/c Ratio | 1.33 | 1.20 | 1.30 | 1.32 | 0.97 | | 1.09 | 1.12 | | 0.72 | 1.07 | 0.29 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | ۶ | → | • | • | ← | • | 4 | † | / | > | ļ | 4 | |-------------------------|------|----------|------|------|----------|------|-------|----------|------|-------------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | Ť | ተተተ | 7 | ¥ | ተተተ | 7 | 44 | ^ | 77 | 44 | ^ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 225 | | 0 | 175 | | 0 | 160 | | 80 | 405 | | 120 | | Storage Lanes | 1 | | 1 | 1 | | 1 | 2 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 40 | | | 40 | | | Link Distance (ft) | | 1163 | | | 923 | | | 812 | | | 788 | | | Travel Time (s) | | 22.7 | | | 18.0 | | | 13.8 | | | 13.4 | | | Lane Group Flow (vph) | 112 | 663 | 439 | 541 | 1388 | 980 | 398 | 929 | 224 | 337 | 480 | 296 | | v/c Ratio | 0.72 | 0.54 | 0.66 | 0.96 | 0.60 | 1.11 | 1.07 | 0.99 | 0.14 | 0.98 | 0.53 | 0.50 | | Control Delay | 47.6 | 41.8 | 28.9 | 56.1 | 25.5 | 88.3 | 117.8 | 70.0 | 9.0 | 98.5 | 40.7 | 23.9 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 47.6 | 41.8 | 28.9 | 56.1 | 25.5 | 88.3 | 117.8 | 70.0 | 9.0 | 98.5 | 40.7 | 23.9 | | Queue Length 50th (ft) | 42 | 166 | 219 | 318 | 286 | ~739 | ~176 | 377 | 30 | 136 | 168 | 119 | | Queue Length 95th (ft) | #100 | 209 | 340 | #540 | 335 | #995 | #277 | #519 | 51 | #232 | 223 | 206 | | Internal Link Dist (ft) | | 1083 | | | 843 | | | 732 | | | 708 | | | Turn Bay Length (ft) | 225 | | | 175 | | | 160 | | 80 | 405 | | 120 | | Base Capacity (vph) | 156 | 1232 | 669 | 576 | 2330 | 883 | 371 | 943 | 1607 | 343 | 914 | 594 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.72 | 0.54 | 0.66 | 0.94 | 0.60 | 1.11 | 1.07 | 0.99 | 0.14 | 0.98 | 0.53 | 0.50 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | • | - | \rightarrow | • | ← | • | 4 | † | / | - | ļ | 4 | |-------------------------|------|----------|---------------|-------|------|------|------|----------|------|-------|----------|------| | Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT | SBR | | Lane Configurations | ሻ | ^ | 7 | ሻ | ተተተ | 7 | ሻሻ | ^ | 77 | 1/1/ | ^ | 7 | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | | 0% | | | 0% | | | 0% | | | 0% | | | Storage Length (ft) | 225 | | 0 | 175 | | 0 | 160 | | 80 | 405 | | 120 | | Storage Lanes | 1 | | 1 | 1 | | 1 | 2 | | 1 | 1 | | 1 | | Taper Length (ft) | 25 | | | 25 | | | 25 | | | 25 | | | | Right Turn on Red | | | Yes | | | Yes | | | Yes | | | Yes | | Link Speed (mph) | | 35 | | | 35 | | | 40 | | | 40 | | | Link Distance (ft) | | 1163 | | | 923 | | | 812 | | | 788 | | | Travel Time (s) | | 22.7 | | | 18.0 | | | 13.8 | | | 13.4 | | | Lane Group Flow (vph) | 255 | 1851 | 766 | 234 | 1213 | 351 | 234 | 617 | 713 | 840 | 1021 | 426 | | v/c Ratio | 0.94 | 1.02 | 0.88 | 1.19 | 0.76 | 0.47 | 0.53 | 0.77 | 0.70 | 1.17 | 0.94 | 0.56 | | Control Delay | 72.3 | 64.6 | 35.4 | 151.0 | 41.0 | 5.6 | 52.9 | 50.6 | 31.5 | 135.0 | 57.8 | 23.6 | | Queue Delay | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Total Delay | 72.3 | 64.6 | 35.4 | 151.0 | 41.0 | 5.6 | 52.9 | 50.6 | 31.5 | 135.0 | 57.8 | 23.6 | | Queue Length 50th (ft) | 147 | ~579 | 449 | ~169 | 316 | 0 | 86 | 232 | 216 | ~401 | 408 | 203 | | Queue Length 95th (ft) | #313 | #676 | #727 | #335 | 373 | 69 | 127 | 299 | 292 | #526 | #548 | 307 | | Internal Link Dist (ft) | | 1083 | | | 843 | | | 732 | | | 708 | | | Turn Bay Length (ft) | 225 | | | 175 | | | 160 | | 80 | 405 | | 120 | | Base Capacity (vph) | 271 | 1817 | 901 | 197 | 1605 | 739 | 514 | 855 | 1022 | 715 | 1082 | 756 | | Starvation Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Spillback Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Storage Cap Reductn | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Reduced v/c Ratio | 0.94 | 1.02 | 0.85 | 1.19 | 0.76 | 0.47 | 0.46 | 0.72 | 0.70 | 1.17 | 0.94 | 0.56 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | ✓ | • | † | / | - | ↓ | |-------------------------|------|------|-----------------|------|------|----------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 77 | ተተ _ጉ | | 1/1 | ^ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 450 | | | Storage Lanes | 0 | 2 | | 0 | 2 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | Yes | | Yes | | | | Link Speed (mph) | 30 | | 30 | | | 40 | | Link Distance (ft) | 300 | | 312 | | | 812 | | Travel Time (s) | 6.8 | | 7.1 | | | 13.8 | | Lane Group Flow (vph) | 0 | 210 | 1330 | 0 | 620 | 810 | | v/c Ratio | | 0.31 | 0.43 | | 0.84 | 0.23 | | Control Delay | | 9.3 | 5.2 | | 30.2 | 0.2 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 9.3 | 5.2 | | 30.2 | 0.2 | | Queue Length 50th (ft) | | 11 | 52 | | 79 | 0 | | Queue Length 95th (ft) | | 34 | 73 | | #152 | 0 | | Internal Link Dist (ft) | 220 | | 232 | | | 732 | | Turn Bay Length (ft) | | | | | 450 | | | Base Capacity (vph) | | 686 | 3073 | | 740 | 3539 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 0.31 | 0.43 | | 0.84 | 0.23 | Area Type: ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. | | • | • | † | ~ | > | ↓ | |-------------------------|------|------|-----------------|------|-------------|----------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 77 | ተተ _ጉ | | 1,1 | ^ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 450 | | | Storage Lanes | 0 | 2 | | 0 | 2 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | Yes | | Yes | | | | Link Speed (mph) | 30 | | 30 | | | 40 | | Link Distance (ft) | 300 | | 312 | | | 812 | | Travel Time (s) | 6.8 | | 7.1 | | | 13.8 | | Lane Group Flow (vph) | 0 | 674 | 1011 | 0 | 370 | 1696 | | v/c Ratio | | 0.84 | 0.33 | | 0.50 | 0.48 | | Control Delay | | 23.3 | 4.3 | | 18.3 | 0.5 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 23.3 | 4.3 | | 18.3 | 0.5 | | Queue Length 50th (ft) | | 57 | 34 | | 43 | 0 | | Queue Length 95th (ft) | | #145 | 49 | | 74 | 0 | | Internal Link Dist (ft) | 220 | | 232 | | | 732 | | Turn Bay Length (ft) | | | | | 450 | | | Base Capacity (vph) | | 799 | 3062 | | 740 | 3539 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 0.84 | 0.33 | | 0.50 | 0.48 | Area Type: Other ^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. # Appendix G: Corrective Actions LOS and Queueing Worksheets | | 1 | • | † | - | / | ↓ | | | |-----------------------------------|----------|-------|----------|------|------------|------------------|-----|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | Lane Configurations | | 777 | 4111 | | ሻሻ | ^ | | | | Traffic Volume (vph) | 0 | 950 | 3830 | 150 | 420 | 2710 | | | | Future Volume (vph) | 0 | 950 | 3830 | 150 | 420 | 2710 | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | Total Lost time (s) | | 4.0 | 5.0 | | 4.0 | 4.0 | | | | Lane Util. Factor | | 0.76 | 0.86 | | 0.97 | 0.91 | | | | Frpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | | | | Flpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | | | | Frt | | 0.85 | 0.99 | | 1.00 | 1.00 | | | | Flt Protected | | 1.00 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (prot) | | 3610 | 6361 | | 3433 | 5085 | | | | FIt Permitted | | 1.00 | 1.00 | | 0.95 | 1.00 | | | | Satd. Flow (perm) | | 3610 | 6361 | | 3433 | 5085 | | | |
Peak-hour factor, PHF | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | | | Adj. Flow (vph) | 0 | 990 | 3990 | 156 | 438 | 2823 | | | | RTOR Reduction (vph) | 0 | 0 | 4 | 0 | 0 | 0 | | | | Lane Group Flow (vph) | 0 | 990 | 4142 | 0 | 438 | 2823 | | | | Confl. Peds. (#/hr) | | | | 15 | 15 | | | | | Turn Type | | Over | NA | | Prot | NA | | | | Protected Phases | | 1 | 2 | | 1 | Free | | | | Permitted Phases | | | | | | | | | | Actuated Green, G (s) | | 34.0 | 77.0 | | 34.0 | 120.0 | | | | Effective Green, g (s) | | 34.0 | 77.0 | | 34.0 | 120.0 | | | | Actuated g/C Ratio | | 0.28 | 0.64 | | 0.28 | 1.00 | | | | Clearance Time (s) | | 4.0 | 5.0 | | 4.0 | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | | | | | Lane Grp Cap (vph) | | 1022 | 4081 | | 972 | 5085 | | | | v/s Ratio Prot | | c0.27 | c0.65 | | 0.13 | 0.56 | | | | v/s Ratio Perm | | | | | | | | | | v/c Ratio | | 0.97 | 1.01 | | 0.45 | 0.56 | | | | Uniform Delay, d1 | | 42.5 | 21.5 | | 35.3 | 0.0 | | | | Progression Factor | | 1.00 | 1.00 | | 1.00 | 1.00 | | | | Incremental Delay, d2 | | 20.7 | 17.9 | | 0.3 | 0.4 | | | | Delay (s) | | 63.1 | 39.4 | | 35.7 | 0.4 | | | | Level of Service | | Е | D | | D | Α | | | | Approach Delay (s) | 63.1 | | 39.4 | | | 5.2 | | | | Approach LOS | Ε | | D | | | Α | | | | Intersection Summary | | | | | | | | | | HCM 2000 Control Delay | | | 28.9 | Н | CM 2000 | Level of Service | С | | | HCM 2000 Volume to Capaci | ty ratio | | 1.00 | | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | 9.0 | | | Intersection Capacity Utilization | on | | 87.7% | | | of Service | E | | | Analysis Period (min) | | | 15 | | | | | | | c Critical Lane Group | | | | | | | | | | | 1 | * | † | 1 | 1 | ↓ | | | | |--------------------------------|-----------|-----------|-----------|------|------------|------------------|----|---|--| | Movement | WBL | WBR | NBT | NBR | SBL | SBT | | | | | Lane Configurations | | 777 | 4111 | | ሻሻ | ^ | | | | | Traffic Volume (vph) | 0 | 810 | 3750 | 280 | 290 | 2670 | | | | | Future Volume (vph) | 0 | 810 | 3750 | 280 | 290 | 2670 | | | | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | | | | Total Lost time (s) | | 4.0 | 5.0 | | 4.0 | 4.0 | | | | | Lane Util. Factor | | 0.76 | 0.86 | | 0.97 | 0.91 | | | | | Frpb, ped/bikes | | 1.00 | 0.99 | | 1.00 | 1.00 | | | | | Flpb, ped/bikes | | 1.00 | 1.00 | | 1.00 | 1.00 | | | | | Frt | | 0.85 | 0.99 | | 1.00 | 1.00 | | | | | Flt Protected | | 1.00 | 1.00 | | 0.95 | 1.00 | | | | | Satd. Flow (prot) | | 3610 | 6307 | | 3433 | 5085 | | | | | Flt Permitted | | 1.00 | 1.00 | | 0.95 | 1.00 | | | | | Satd. Flow (perm) | | 3610 | 6307 | | 3433 | 5085 | | | | | Peak-hour factor, PHF | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | | | | | Adj. Flow (vph) | 0.07 | 835 | 3866 | 289 | 299 | 2753 | | | | | RTOR Reduction (vph) | 0 | 1 | 9 | 0 | 0 | 0 | | | | | Lane Group Flow (vph) | 0 | 834 | 4146 | 0 | 299 | 2753 | | | | | Confl. Peds. (#/hr) | | 001 | 1110 | 30 | 30 | 2700 | | | | | Turn Type | | Over | NA | - 00 | Prot | NA | | | | | Protected Phases | | 1 | 2 | | 1 | Free | | | | | Permitted Phases | | | | | ı | 1100 | | | | | Actuated Green, G (s) | | 29.7 | 81.3 | | 29.7 | 120.0 | | | | | Effective Green, g (s) | | 29.7 | 81.3 | | 29.7 | 120.0 | | | | | Actuated g/C Ratio | | 0.25 | 0.68 | | 0.25 | 1.00 | | | | | Clearance Time (s) | | 4.0 | 5.0 | | 4.0 | 1.00 | | | | | Vehicle Extension (s) | | 3.0 | 3.0 | | 3.0 | | | | | | Lane Grp Cap (vph) | | 893 | 4272 | | 849 | 5085 | | | | | v/s Ratio Prot | | c0.23 | c0.66 | | 0.09 | 0.54 | | | | | v/s Ratio Perm | | 00.23 | 00.00 | | 0.09 | 0.54 | | | | | v/c Ratio | | 0.93 | 0.97 | | 0.35 | 0.54 | | | | | | | 44.2 | 18.2 | | 37.2 | 0.0 | | | | | Uniform Delay, d1 | | 1.00 | 1.00 | | 1.00 | 1.00 | | | | | Progression Factor | | 16.4 | 8.5 | | 0.3 | 0.4 | | | | | Incremental Delay, d2 | | 60.6 | 26.7 | | 37.5 | 0.4 | | | | | Delay (s)
Level of Service | | 60.6
E | 20.7
C | | 37.5
D | | | | | | Approach Delay (s) | 60.6 | | 26.7 | | U | A
4.0 | | | | | Approach LOS | 60.6
E | | 20.7
C | | | 4.0
A | | | | | Intersection Summary | | | | | | | | | | | HCM 2000 Control Delay | | | 21.6 | H | CM 2000 | Level of Service | | C | | | HCM 2000 Volume to Capac | ity ratio | | 0.96 | | | | | | | | Actuated Cycle Length (s) | | | 120.0 | Sı | um of lost | time (s) | 9. | 0 | | | Intersection Capacity Utilizat | ion | | 85.6% | | | of Service | | E | | | Analysis Period (min) | | | 15 | | | | | | | | c Critical Lane Group | | | | | | | | | | | | 1 | • | Ť | 1 | - | ↓ | |-------------------------|------|------|-------|------|------|------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 777 | 4111 | | 44 | ተተተ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 300 | | | Storage Lanes | 0 | 3 | | 0 | 2 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | Yes | | Yes | | | | Link Speed (mph) | 30 | | 35 | | | 35 | | Link Distance (ft) | 410 | | 338 | | | 534 | | Travel Time (s) | 9.3 | | 6.6 | | | 10.4 | | Lane Group Flow (vph) | 0 | 990 | 4146 | 0 | 438 | 2823 | | v/c Ratio | | 0.97 | 1.02 | | 0.45 | 0.56 | | Control Delay | | 64.3 | 39.9 | | 37.1 | 0.4 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 64.3 | 39.9 | | 37.1 | 0.4 | | Queue Length 50th (ft) | | 332 | ~931 | | 143 | 0 | | Queue Length 95th (ft) | | #448 | #1036 | | 193 | 0 | | Internal Link Dist (ft) | 330 | | 258 | | | 454 | | Turn Bay Length (ft) | | | | | 300 | | | Base Capacity (vph) | | 1022 | 4084 | | 972 | 5085 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 0.97 | 1.02 | | 0.45 | 0.56 | Area Type: Other Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles. ^{# 95}th percentile volume exceeds capacity, queue may be longer. | | 1 | * | 1 | 1 | 1 | Ţ | |-------------------------|------|------|------|------|------|------| | Lane Group | WBL | WBR | NBT | NBR | SBL | SBT | | Lane Configurations | | 777 | ttt⊅ | | 44 | ተተተ | | Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | | Lane Width (ft) | 12 | 12 | 12 | 12 | 12 | 12 | | Grade (%) | 0% | | 0% | | | 0% | | Storage Length (ft) | 0 | 0 | | 0 | 300 | | | Storage Lanes | 0 | 3 | | 0 | 2 | | | Taper Length (ft) | 25 | | | | 25 | | | Right Turn on Red | | Yes | | Yes | | | | Link Speed (mph) | 30 | | 35 | | | 35 | | Link Distance (ft) | 410 | | 338 | | | 534 | | Travel Time (s) | 9.3 | | 6.6 | | | 10.4 | | Lane Group Flow (vph) | 0 | 835 | 4155 | 0 | 299 | 2753 | | v/c Ratio | | 0.93 | 0.97 | | 0.35 | 0.54 | | Control Delay | | 62.2 | 26.9 | | 38.5 | 0.4 | | Queue Delay | | 0.0 | 0.0 | | 0.0 | 0.0 | | Total Delay | | 62.2 | 26.9 | | 38.5 | 0.4 | | Queue Length 50th (ft) | | 277 | 805 | | 98 | 0 | | Queue Length 95th (ft) | | #378 | 869 | | 140 | 0 | | Internal Link Dist (ft) | 330 | | 258 | | | 454 | | Turn Bay Length (ft) | | | | | 300 | | | Base Capacity (vph) | | 903 | 4284 | | 858 | 5085 | | Starvation Cap Reductn | | 0 | 0 | | 0 | 0 | | Spillback Cap Reductn | | 0 | 0 | | 0 | 0 | | Storage Cap Reductn | | 0 | 0 | | 0 | 0 | | Reduced v/c Ratio | | 0.92 | 0.97 | | 0.35 | 0.54 | Area Type: Other ^{# 95}th percentile volume exceeds capacity, queue may be longer.